When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ozone–oxygen cycle - Wikipedia

    en.wikipedia.org/wiki/Ozone–oxygen_cycle

    The atomic oxygen produced may react with another oxygen molecule to reform ozone via the ozone creation reaction (reaction 2 above). These two reactions thus form the ozone–oxygen cycle, wherein the chemical energy released by ozone creation becomes molecular kinetic energy.

  3. Marine biogeochemical cycles - Wikipedia

    en.wikipedia.org/wiki/Marine_biogeochemical_cycles

    Energy flow always follows a unidirectional and noncyclic path, whereas the movement of mineral nutrients is cyclic. Mineral cycles include the carbon cycle, oxygen cycle, nitrogen cycle, phosphorus cycle and sulfur cycle among others that continually recycle along with other mineral nutrients into productive ecological nutrition.

  4. Oxygen cycle - Wikipedia

    en.wikipedia.org/wiki/Oxygen_cycle

    The word oxygen in the literature typically refers to the most common oxygen allotrope, elemental/diatomic oxygen (O 2), as it is a common product or reactant of many biogeochemical redox reactions within the cycle. [2] Processes within the oxygen cycle are considered to be biological or geological and are evaluated as either a source (O 2 ...

  5. Ozone - Wikipedia

    en.wikipedia.org/wiki/Ozone

    Then, the oxygen from the first step is an intermediate because it participates as a reactant in the second step, which is a bimolecular reaction because there are two different reactants (ozone and oxygen) that give rise to one product, that corresponds to molecular oxygen in the gas phase.

  6. Ecosystem respiration - Wikipedia

    en.wikipedia.org/wiki/Ecosystem_respiration

    This constant cycle of carbon through the system is not the only element being transferred. In animal and plant respiration these living beings take in glucose and oxygen while emitting energy, carbon dioxide, and water as waste. These constant cycles provide for a influx of oxygen into the system and carbon out of the system.

  7. Ground-level ozone - Wikipedia

    en.wikipedia.org/wiki/Ground-level_ozone

    The IPCC believes that "measured stratospheric O3 losses over the past two decades have generated a negative forcing of the surface-troposphere system" of around 0.15 0.10 watts per square metre (W/m 2). [39] Furthermore, rising air temperatures often improve ozone-forming processes, which has a repercussion on climate, as well.

  8. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    To do this, it must release the absorbed energy. This can happen in various ways. The extra energy can be converted into molecular motion and lost as heat, or re-emitted by the electron as light (fluorescence). The energy, but not the electron itself, may be passed onto another molecule; this is called resonance energy transfer.

  9. Chemical cycling - Wikipedia

    en.wikipedia.org/wiki/Chemical_cycling

    The majority of known chemical cycles on Venus involve its dense atmosphere and compounds of carbon and sulphur, the most significant being a strong carbon dioxide cycle. [3] The lack of a complete carbon cycle including a geochemical carbon cycle, for example, is thought to be a cause of its runaway greenhouse effect , due to the lack of a ...