Search results
Results From The WOW.Com Content Network
Like some other fractals, the function exhibits self-similarity: every zoom (red circle) is similar to the global plot. In mathematics , the Weierstrass function , named after its discoverer, Karl Weierstrass , is an example of a real-valued function that is continuous everywhere but differentiable nowhere.
Other equations in physics, such as Gauss's law of the electric field and Gauss's law for gravity, have a similar mathematical form to the continuity equation, but are not usually referred to by the term "continuity equation", because j in those cases does not represent the flow of a real physical quantity.
For a Lipschitz continuous function, there exists a double cone (white) whose origin can be moved along the graph so that the whole graph always stays outside the double cone. In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions.
For a Lipschitz continuous function, there is a double cone (shown in white) whose vertex can be translated along the graph so that the graph always remains entirely outside the cone. The concept of continuity for functions between metric spaces can be strengthened in various ways by limiting the way δ {\displaystyle \delta } depends on ε ...
Continuity (fiction), consistency of plot elements, such as characterization, location, and costuming, within a work of fiction (this is a mass noun) Continuity (setting) , one of several similar but distinct fictional universes in a broad franchise of related works (this is a count noun)
The velocity satisfies the continuity equation for incompressible flow: ∇ ⋅ u = 0. {\displaystyle \quad \nabla \cdot \mathbf {u} =0.} Although in principle the stream function doesn't require the use of a particular coordinate system, for convenience the description presented here uses a right-handed Cartesian coordinate system with ...
As the fluid flows outward, the area of flow increases. As a result, to satisfy continuity equation, the velocity decreases and the streamlines spread out. The velocity at all points at a given distance from the source is the same. Fig 2 - Streamlines and potential lines for source flow. The velocity of fluid flow can be given as -
Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...