When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Graph Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Graph_Fourier_transform

    Analogously to the classical Fourier transform, the eigenvalues represent frequencies and eigenvectors form what is known as a graph Fourier basis. The Graph Fourier transform is important in spectral graph theory. It is widely applied in the recent study of graph structured learning algorithms, such as the widely employed convolutional networks.

  3. Gabor wavelet - Wikipedia

    en.wikipedia.org/wiki/Gabor_wavelet

    The equation of a 1-D Gabor wavelet is a Gaussian modulated by a complex exponential, described as follows: [3] = / ()As opposed to other functions commonly used as bases in Fourier Transforms such as and , Gabor wavelets have the property that they are localized, meaning that as the distance from the center increases, the value of the function becomes exponentially suppressed.

  4. Daubechies wavelet - Wikipedia

    en.wikipedia.org/wiki/Daubechies_wavelet

    The Daubechies wavelets are not defined in terms of the resulting scaling and wavelet functions; in fact, they are not possible to write down in closed form. The graphs below are generated using the cascade algorithm, a numeric technique consisting of inverse-transforming [1 0 0 0 0 ... ] an appropriate number of times.

  5. Discrete wavelet transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_wavelet_transform

    There are far fewer significant components in the wavelet domain in this example than there are in the time domain, and most of the significant components are towards the coarser coefficients on the left. Hence, natural signals are compressible in the wavelet domain. The wavelet transform is a multiresolution, bandpass representation of a signal.

  6. Wavelet transform - Wikipedia

    en.wikipedia.org/wiki/Wavelet_transform

    Wavelets have some slight benefits over Fourier transforms in reducing computations when examining specific frequencies. However, they are rarely more sensitive, and indeed, the common Morlet wavelet is mathematically identical to a short-time Fourier transform using a Gaussian window function. [ 13 ]

  7. Morlet wavelet - Wikipedia

    en.wikipedia.org/wiki/Morlet_wavelet

    The Morlet wavelet filtering process involves transforming the sensor's output signal into the frequency domain. By convolving the signal with the Morlet wavelet, which is a complex sinusoidal wave with a Gaussian envelope, the technique allows for the extraction of relevant frequency components from the signal.

  8. Haar wavelet - Wikipedia

    en.wikipedia.org/wiki/Haar_wavelet

    The Haar wavelet. In mathematics, the Haar wavelet is a sequence of rescaled "square-shaped" functions which together form a wavelet family or basis. Wavelet analysis is similar to Fourier analysis in that it allows a target function over an interval to be represented in terms of an orthonormal basis. The Haar sequence is now recognised as the ...

  9. Wavelet - Wikipedia

    en.wikipedia.org/wiki/Wavelet

    The wavelets forming a continuous wavelet transform (CWT) are subject to the uncertainty principle of Fourier analysis respective sampling theory: [4] given a signal with some event in it, one cannot assign simultaneously an exact time and frequency response scale to that event. The product of the uncertainties of time and frequency response ...