When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    A very useful special case, often given as the definition of torque in fields other than physics, is as follows: = (). The construction of the "moment arm" is shown in the figure to the right, along with the vectors r and F mentioned above. The problem with this definition is that it does not give the direction of the torque but only the ...

  3. Couple (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Couple_(mechanics)

    The SI unit for the torque of the couple is newton metre. If the two forces are F and −F, then the magnitude of the torque is given by the following formula: = where is the moment of couple; F is the magnitude of the force; d is the perpendicular distance (moment) between the two parallel forces

  4. Torsion (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Torsion_(mechanics)

    Other calculation methods include membrane analogy and shear flow approximation. [8] r is the perpendicular distance between the rotational axis and the farthest point in the section (at the outer surface). ℓ is the length of the object to or over which the torque is being applied. φ (phi) is the angle of twist in radians.

  5. Line of action - Wikipedia

    en.wikipedia.org/wiki/Line_of_action

    Calculation of torque [ edit ] For the simple geometry associated with the figure, there are three equivalent equations for the magnitude of the torque associated with a force F → {\displaystyle {\vec {F}}} directed at displacement r → {\displaystyle {\vec {r}}} from the axis whenever the force is perpendicular to the axis:

  6. Moment (physics) - Wikipedia

    en.wikipedia.org/wiki/Moment_(physics)

    Moments are usually defined with respect to a fixed reference point and refer to physical quantities located some distance from the reference point. For example, the moment of force, often called torque, is the product of a force on an object and the distance from the reference point to the object. In principle, any physical quantity can be ...

  7. Resultant force - Wikipedia

    en.wikipedia.org/wiki/Resultant_force

    The defining feature of a resultant force, or resultant force-torque, is that it has the same effect on the rigid body as the original system of forces. [1] Calculating and visualizing the resultant force on a body is done through computational analysis, or (in the case of sufficiently simple systems) a free body diagram.

  8. The Method of Mechanical Theorems - Wikipedia

    en.wikipedia.org/wiki/The_Method_of_Mechanical...

    The total torque exerted by the triangle is its area, 1/2, times the distance 2/3 of its center of mass from the fulcrum at =. This torque of 1/3 balances the parabola, which is at a distance 1 from the fulcrum. Hence, the area of the parabola must be 1/3 to give it the opposite torque.

  9. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    Torque-free precessions are non-trivial solution for the situation where the torque on the right hand side is zero. When I is not constant in the external reference frame (i.e. the body is moving and its inertia tensor is not constantly diagonal) then I cannot be pulled through the derivative operator acting on L.