Ad
related to: nonlinear control system examples in business communication problems
Search results
Results From The WOW.Com Content Network
An example of a nonlinear control system is a thermostat-controlled heating system. A building heating system such as a furnace has a nonlinear response to changes in temperature; it is either "on" or "off", it does not have the fine control in response to temperature differences that a proportional (linear) device would have.
Linear management is the application of reductionism to management problems, often relying on the ability to predict, engineer and control outcomes by manipulating the component parts of a business (organization, operation, policy, process and so on). Business process reengineering (BPR) is a popular example of linear management at work. The ...
For example, in case of aircraft control, a set of controllers are designed at different gridded locations of corresponding parameters such as AoA, Mach, dynamic pressure, CG etc. In brief, gain scheduling is a control design approach that constructs a nonlinear controller for a nonlinear plant by patching together a collection of linear ...
Nonlinear systems are often analyzed using numerical methods on computers, for example by simulating their operation using a simulation language. If only solutions near a stable point are of interest, nonlinear systems can often be linearized by approximating them by a linear system using perturbation theory, and linear techniques can be used. [16]
In control systems, sliding mode control (SMC) is a nonlinear control method that alters the dynamics of a nonlinear system by applying a discontinuous control signal (or more rigorously, a set-valued control signal) that forces the system to "slide" along a cross-section of the system's normal behavior.
In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. [1] [2] Nonlinear problems are of interest to engineers, biologists, [3] [4] [5] physicists, [6] [7] mathematicians, and many other scientists since most systems are inherently nonlinear in nature. [8]
Block diagram illustrating the feedback linearization of a nonlinear system. Feedback linearization is a common strategy employed in nonlinear control to control nonlinear systems. Feedback linearization techniques may be applied to nonlinear control systems of the form
System identification is a method of identifying or measuring the mathematical model of a system from measurements of the system inputs and outputs. The applications of system identification include any system where the inputs and outputs can be measured and include industrial processes, control systems, economic data, biology and the life sciences, medicine, social systems and many more.