Search results
Results From The WOW.Com Content Network
Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...
The gas constant occurs in the ideal gas law: = = where P is the absolute pressure, V is the volume of gas, n is the amount of substance, m is the mass, and T is the thermodynamic temperature. R specific is the mass-specific gas constant. The gas constant is expressed in the same unit as molar heat.
= = ¯ ¯ =, where C is the heat capacity, ¯ the molar heat capacity (heat capacity per mole), and c the specific heat capacity (heat capacity per unit mass) of a gas. The suffixes P and V refer to constant-pressure and constant-volume conditions respectively.
C is the heat capacity of a body made of the material in question (J/K) n is the amount of substance in the body ; R is the gas constant (J⋅K −1 ⋅mol −1) N is the number of molecules in the body. (dimensionless) k B is the Boltzmann constant (J⋅K −1) Again, SI units shown for example.
These include the Boltzmann constant, which gives the correspondence of the dimension temperature to the dimension of energy per degree of freedom, and the Avogadro constant, which gives the correspondence of the dimension of amount of substance with the dimension of count of entities (the latter formally regarded in the SI as being dimensionless).
In other words, that theory predicts that the molar heat capacity at constant volume c V,m of all monatomic gases will be the same; specifically, c V,m = 3 / 2 R. where R is the ideal gas constant, about 8.31446 J⋅K −1 ⋅mol −1 (which is the product of the Boltzmann constant k B and the Avogadro constant).
An equivalent statement of the Dulong–Petit law in modern terms is that, regardless of the nature of the substance, the specific heat capacity c of a solid element (measured in joule per kelvin per kilogram) is equal to 3R/M, where R is the gas constant (measured in joule per kelvin per mole) and M is the molar mass (measured in kilogram per mole).
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code