Search results
Results From The WOW.Com Content Network
The sum of degrees of all six vertices is 2 + 3 + 2 + 3 + 3 + 1 = 14, twice the number of edges. In graph theory , the handshaking lemma is the statement that, in every finite undirected graph , the number of vertices that touch an odd number of edges is even.
For two convex polygons P and Q in the plane with m and n vertices, their Minkowski sum is a convex polygon with at most m + n vertices and may be computed in time O(m + n) by a very simple procedure, which may be informally described as follows. Assume that the edges of a polygon are given and the direction, say, counterclockwise, along the ...
The degree sum formula states that, given a graph = (,), = | |. The formula implies that in any undirected graph, the number of vertices with odd degree is even. This statement (as well as the degree sum formula) is known as the handshaking lemma. The latter name comes from a popular mathematical problem, which is to prove that in any group ...
A directed graph with three vertices and four directed edges (the double arrow represents an edge in each direction). A directed graph or digraph is a graph in which edges have orientations. In one restricted but very common sense of the term, [ 5 ] a directed graph is an ordered pair G = ( V , E ) {\displaystyle G=(V,E)} comprising:
The total degree is the sum of the degrees of all vertices; by the handshaking lemma it is an even number. The degree sequence is the collection of degrees of all vertices, in sorted order from largest to smallest. In a directed graph, one may distinguish the in-degree (number of incoming edges) and out-degree (number of outgoing edges).
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
The maximum independent set problem is the special case in which all weights are one. In the maximal independent set listing problem, the input is an undirected graph, and the output is a list of all its maximal independent sets. The maximum independent set problem may be solved using as a subroutine an algorithm for the maximal independent set ...
An optimal clique cover of the line graph () may be formed with one clique for each triangle in that has two or three degree-2 vertices, and one clique for each vertex that has degree at least two and is not a degree-two vertex of one of these triangles. The intersection number is the number of cliques of these two types.