Search results
Results From The WOW.Com Content Network
In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. [1] The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions.
In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence (,,, …) defines a series S that is denoted = + + + = =. The n th partial sum S n is the sum of the first n terms of the sequence; that is,
A classic example is the alternating harmonic series given by + + = = +, which converges to (), but is not absolutely convergent (see Harmonic series). Bernhard Riemann proved that a conditionally convergent series may be rearranged to converge to any value at all, including ∞ or −∞; see Riemann series theorem .
In mathematics, a geometric series is a series summing the terms of an infinite geometric sequence, in which the ratio of consecutive terms is constant.For example, the series + + + is a geometric series with common ratio , which converges to the sum of .
If a series is convergent but not absolutely convergent, it is called conditionally convergent. An example of a conditionally convergent series is the alternating harmonic series. Many standard tests for divergence and convergence, most notably including the ratio test and the root test, demonstrate absolute convergence.
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions . Functions of each type are infinitely differentiable , but complex analytic functions exhibit properties that do not generally hold for real analytic functions.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.