When.com Web Search

  1. Ad

    related to: calculus continuity calculator given equation and solution set

Search results

  1. Results From The WOW.Com Content Network
  2. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations. A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to ...

  3. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    This notion of continuity is the same as topological continuity when the partially ordered sets are given the Scott topology. [ 19 ] [ 20 ] In category theory , a functor F : C → D {\displaystyle F:{\mathcal {C}}\to {\mathcal {D}}} between two categories is called continuous if it commutes with small limits .

  4. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    In the theory of differential equations, Lipschitz continuity is the central condition of the Picard–Lindelöf theorem which guarantees the existence and uniqueness of the solution to an initial value problem. A special type of Lipschitz continuity, called contraction, is used in the Banach fixed-point theorem. [2]

  5. Fundamental lemma of the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Fundamental_lemma_of_the...

    The given functions (f, g) may be discontinuous, provided that they are locally integrable (on the given interval). In this case, Lebesgue integration is meant, the conclusions hold almost everywhere (thus, in all continuity points), and differentiability of g is interpreted as local absolute continuity (rather than continuous differentiability).

  6. Direct method in the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Direct_method_in_the...

    In mathematics, the direct method in the calculus of variations is a general method for constructing a proof of the existence of a minimizer for a given functional, [1] introduced by Stanisław Zaremba and David Hilbert around 1900. The method relies on methods of functional analysis and topology. As well as being used to prove the existence of ...

  7. Implicit function theorem - Wikipedia

    en.wikipedia.org/wiki/Implicit_function_theorem

    The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).

  8. Brouwer fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Brouwer_fixed-point_theorem

    This generalization is known as Schauder's fixed-point theorem, a result generalized further by S. Kakutani to set-valued functions. [42] One also meets the theorem and its variants outside topology. It can be used to prove the Hartman-Grobman theorem, which describes the qualitative behaviour of certain differential equations near certain ...

  9. Continuous function (set theory) - Wikipedia

    en.wikipedia.org/wiki/Continuous_function_(set...

    In set theory, a continuous function is a sequence of ordinals such that the values assumed at limit stages are the limits (limit suprema and limit infima) of all values at previous stages. More formally, let γ be an ordinal, and s := s α | α < γ {\displaystyle s:=\langle s_{\alpha }|\alpha <\gamma \rangle } be a γ -sequence of ordinals.