Ad
related to: schematic symbol for electric motor
Search results
Results From The WOW.Com Content Network
An electronic symbol is a pictogram used to represent various electrical and electronic devices or functions, such as wires, batteries, resistors, and transistors, in a schematic diagram of an electrical or electronic circuit. These symbols are largely standardized internationally today, but may vary from country to country, or engineering ...
A reference designator unambiguously identifies the location of a component within an electrical schematic or on a printed circuit board.The reference designator usually consists of one or two letters followed by a number, e.g. C3, D1, R4, U15.
A circuit diagram (or: wiring diagram, electrical diagram, elementary diagram, electronic schematic) is a graphical representation of an electrical circuit. A pictorial circuit diagram uses simple images of components, while a schematic diagram shows the components and interconnections of the circuit using standardized symbolic representations.
A typical one-line diagram with annotated power flows. Red boxes represent circuit breakers, grey lines represent three-phase bus and interconnecting conductors, the orange circle represents an electric generator, the green spiral is an inductor, and the three overlapping blue circles represent a double-wound transformer with a tertiary winding.
Schematic symbol of a slip ring motor. A wound-rotor motor, also known as slip ring-rotor motor, is a type of induction motor where the rotor windings are connected through slip rings to external resistance. Adjusting the resistance allows control of the speed/torque characteristic of the motor.
A brushless DC electric motor (BLDC), also known as an electronically commutated motor, is a synchronous motor using a direct current (DC) electric power supply. It uses an electronic controller to switch DC currents to the motor windings producing magnetic fields that effectively rotate in space and which the permanent magnet rotor follows.
By connecting its terminals, the motor's kinetic energy is consumed rapidly in form of electrical current and causes the motor to slow down. Another case allows the motor to coast to a stop, as the motor is effectively disconnected from the circuit. The following table summarizes operation, with S1-S4 corresponding to the diagram above.
Electric motors; 32 return 31 33 main terminal (swap of 32 and 33 is possible) 30 33a limit 33b field 54e 33f 2. slow rpm: 33g 3. slow rpm 33h 4. slow rpm 33L rotation left 30L 33R rotation right 30R Indicators 49 flasher unit in 15, 15+, 15/54, +, +15, X 49a flasher unit out, indicator switch in 54L, S, S4, L 49b out 2. flasher circuit 49c