When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. dplyr - Wikipedia

    en.wikipedia.org/wiki/Dplyr

    dplyr is an R package whose set of functions are designed to enable dataframe (a spreadsheet-like data structure) manipulation in an intuitive, user-friendly way. It is one of the core packages of the popular tidyverse set of packages in the R programming language. [1]

  3. Tidyverse - Wikipedia

    en.wikipedia.org/wiki/Tidyverse

    There is also an active R community around the tidyverse. For example, there is the TidyTuesday social data project organised by the Data Science Learning Community (DSLC), [ 16 ] where varied real-world datasets are released each week for the community to participate, share, practice, and make learning to work with data easier. [ 17 ]

  4. Tibbles - Wikipedia

    en.wikipedia.org/wiki/Tibbles

    Tibbles and Tibble may refer to: Tibbles, a pet cat which is alleged to have wiped out Lyall's wren on Stephens Island in New Zealand tibble, an alternative to a dataframe or datatable in the tidyverse in the R programming language

  5. Programming with Big Data in R - Wikipedia

    en.wikipedia.org/wiki/Programming_with_Big_Data_in_R

    Programming with Big Data in R (pbdR) [1] is a series of R packages and an environment for statistical computing with big data by using high-performance statistical computation. [ 2 ] [ 3 ] The pbdR uses the same programming language as R with S3/S4 classes and methods which is used among statisticians and data miners for developing statistical ...

  6. Multicriteria classification - Wikipedia

    en.wikipedia.org/wiki/Multicriteria_classification

    In a value function model, the classification rules can be expressed as follows: Alternative i is assigned to group c r if and only if + < < where V is a value function (non-decreasing with respect to the criteria) and t 1 > t 2 > ... > t k−1 are thresholds defining the category limits.

  7. Model selection - Wikipedia

    en.wikipedia.org/wiki/Model_selection

    Model selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one. [1] In the context of machine learning and more generally statistical analysis, this may be the selection of a statistical model from a set of candidate models, given data.

  8. Multiple-criteria decision analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple-criteria_decision...

    In this example a company should prefer product B's risk and payoffs under realistic risk preference coefficients. Multiple-criteria decision-making (MCDM) or multiple-criteria decision analysis (MCDA) is a sub-discipline of operations research that explicitly evaluates multiple conflicting criteria in decision making (both in daily life and in settings such as business, government and medicine).

  9. Bayesian information criterion - Wikipedia

    en.wikipedia.org/wiki/Bayesian_information_criterion

    The BIC suffers from two main limitations [7] the above approximation is only valid for sample size n {\displaystyle n} much larger than the number k {\displaystyle k} of parameters in the model. the BIC cannot handle complex collections of models as in the variable selection (or feature selection ) problem in high-dimension.