Search results
Results From The WOW.Com Content Network
To help compare different orders of magnitude, the following list describes various speed levels between approximately 2.2 × 10 −18 m/s and 3.0 × 10 8 m/s (the speed of light). Values in bold are exact.
The speed of light in vacuum is defined to be exactly 299 792 458 m/s (approximately 186,282 miles per second). The fixed value of the speed of light in SI units results from the fact that the metre is now defined in terms of the speed of light. All forms of electromagnetic radiation move at exactly this same speed in vacuum.
Rømer starts with an order of magnitude demonstration that the speed of light must be so great that it takes much less than one second to travel a distance equal to Earth's diameter. The point L on the diagram represents the second quadrature of Jupiter, when the angle between Jupiter and the Sun (as seen from Earth) is 90°.
For example, for visible light, the refractive index of glass is typically around 1.5, meaning that light in glass travels at c / 1.5 ≈ 200 000 km/s (124 000 mi/s); the refractive index of air for visible light is about 1.0003, so the speed of light in air is about 90 km/s (56 mi/s) slower than c.
[6] [7] Huygens reports on a letter by Ole Christensen Rømer, dated from 1677, where the speed of light is said to be at least 100,000 times faster than the speed of sound, and possibly six times higher. In the latter case, the speed found by Rømer (214,000 km /s) was of the same order of magnitude as the speed of light admitted today. [5]
Factor ()Multiple Value Item 0 0 lux 0 lux Absolute darkness 10 −4: 100 microlux 100 microlux: Starlight overcast moonless night sky [1]: 140 microlux: Venus at brightest [1]: 200 microlux
At any given point on the Earth's surface, the magnitude and direction of the wind would vary with time of day and season. By analyzing the return speed of light in different directions at various different times, it was thought to be possible to measure the motion of the Earth relative to the aether.
Light-time correction occurs in principle during the observation of any moving object, because the speed of light is finite. The magnitude and direction of the displacement in position depends upon the distance of the object from the observer and the motion of the object, and is measured at the instant at which the object's light reaches the ...