Search results
Results From The WOW.Com Content Network
Figure 1. This Argand diagram represents the complex number lying on a plane.For each point on the plane, arg is the function which returns the angle . In mathematics (particularly in complex analysis), the argument of a complex number z, denoted arg(z), is the angle between the positive real axis and the line joining the origin and z, represented as a point in the complex plane, shown as in ...
The number of arguments that a function takes is called the arity of the function. A function that takes a single argument as input, such as () =, is called a unary function. A function of two or more variables is considered to have a domain consisting of ordered pairs or tuples of argument values. The argument of a circular function is an angle.
A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.
In mathematics, the arguments of the maxima (abbreviated arg max or argmax) and arguments of the minima (abbreviated arg min or argmin) are the input points at which a function output value is maximized and minimized, respectively. [note 1] While the arguments are defined over the domain of a function, the output is part of its codomain.
A binary equaliser (that is, an equaliser of just two functions) is also called a difference kernel.This may also be denoted DiffKer(f, g), Ker(f, g), or Ker(f − g).The last notation shows where this terminology comes from, and why it is most common in the context of abstract algebra: The difference kernel of f and g is simply the kernel of the difference f − g.
Here | z | is the absolute value or modulus of the complex number z; θ, the argument of z, is usually taken on the interval 0 ≤ θ < 2π; and the last equality (to | z |e iθ) is taken from Euler's formula. Without the constraint on the range of θ, the argument of z is multi-valued, because the complex exponential function is periodic, with ...
The arguments to a function are frequently surrounded by brackets: (). With some standard function when there is little chance of ambiguity, it is common to omit the parentheses around the argument altogether (e.g., sin x {\displaystyle \sin x} ).
arcosh – inverse hyperbolic cosine function. arcoth – inverse hyperbolic cotangent function. arcsch – inverse hyperbolic cosecant function. (Also written as arcosech.) arcsec – inverse secant function. arcsin – inverse sine function. arctan – inverse tangent function. arctan2 – inverse tangent function with two arguments. (Also ...