When.com Web Search

  1. Ads

    related to: explain knn with suitable example of online training

Search results

  1. Results From The WOW.Com Content Network
  2. k-nearest neighbors algorithm - Wikipedia

    en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

    The input consists of the k closest training examples in a data set. The neighbors are taken from a set of objects for which the class (for k-NN classification) or the object property value (for k-NN regression) is known. This can be thought of as the training set for the algorithm, though no explicit training step is required.

  3. Instance-based learning - Wikipedia

    en.wikipedia.org/wiki/Instance-based_learning

    Examples of instance-based learning algorithms are the k-nearest neighbors algorithm, kernel machines and RBF networks. [ 2 ] : ch. 8 These store (a subset of) their training set; when predicting a value/class for a new instance, they compute distances or similarities between this instance and the training instances to make a decision.

  4. Multiclass classification - Wikipedia

    en.wikipedia.org/wiki/Multiclass_classification

    k-nearest neighbors kNN is considered among the oldest non-parametric classification algorithms. To classify an unknown example, the distance from that example to every other training example is measured. The k smallest distances are identified, and the most represented class by these k nearest neighbours is considered the output class label.

  5. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  6. Structured kNN - Wikipedia

    en.wikipedia.org/wiki/Structured_kNN

    Structured k-nearest neighbours (SkNN) [1] [2] [3] is a machine learning algorithm that generalizes k-nearest neighbors (k-NN). k-NN supports binary classification, multiclass classification, and regression, [4] whereas SkNN allows training of a classifier for general structured output.

  7. Lazy learning - Wikipedia

    en.wikipedia.org/wiki/Lazy_learning

    In machine learning, lazy learning is a learning method in which generalization of the training data is, in theory, delayed until a query is made to the system, as opposed to eager learning, where the system tries to generalize the training data before receiving queries.

  8. KNN - Wikipedia

    en.wikipedia.org/wiki/KNN

    KNN may refer to: k-nearest neighbors algorithm (k-NN), a method for classifying objects; Nearest neighbor graph (k-NNG), a graph connecting each point to its k nearest neighbors; Kabataan News Network, a Philippine television show made by teens; Khanna railway station, in Khanna, Punjab, India (by Indian Railways code)

  9. Supervised learning - Wikipedia

    en.wikipedia.org/wiki/Supervised_learning

    Active learning: Instead of assuming that all of the training examples are given at the start, active learning algorithms interactively collect new examples, typically by making queries to a human user. Often, the queries are based on unlabeled data, which is a scenario that combines semi-supervised learning with active learning.