Ad
related to: quadratic diameter calculator with points and two circles
Search results
Results From The WOW.Com Content Network
Carlyle circle of the quadratic equation x 2 − sx + p = 0. Given the quadratic equation x 2 − sx + p = 0. the circle in the coordinate plane having the line segment joining the points A(0, 1) and B(s, p) as a diameter is called the Carlyle circle of the quadratic equation. [1] [2] [3]
Kissing circles. Given three mutually tangent circles (black), there are, in general, two possible answers (red) as to what radius a fourth tangent circle can have. In geometry, Descartes' theorem states that for every four kissing, or mutually tangent circles, the radii of the circles satisfy a certain quadratic equation. By solving this ...
The recursion terminates when P is empty, and a solution can be found from the points in R: for 0 or 1 points the solution is trivial, for 2 points the minimal circle has its center at the midpoint between the two points, and for 3 points the circle is the circumcircle of the triangle described by the points.
where A 1 and A 2 are the centers of the two circles and r 1 and r 2 are their radii. The power of a point arises in the special case that one of the radii is zero. If the two circles are orthogonal, the Darboux product vanishes. If the two circles intersect, then their Darboux product is
A circle is drawn with the straight line segment joining the start and end points forming a diameter. According to Thales's theorem, the triangle containing these points and any other point on the circle is a right triangle. Intersects of this circle with the middle segment of Lill's method, extended if needed, thus define the two angled paths ...
Circle packing in a square is a packing problem in recreational mathematics, where the aim is to pack n unit circles into the smallest possible square. Equivalently, the problem is to arrange n points in a unit square aiming to get the greatest minimal separation, d n , between points. [ 1 ]
A circle circumscribing any Delaunay triangle does not contain any other input points in its interior. If a circle passing through two of the input points doesn't contain any other input points in its interior, then the segment connecting the two points is an edge of a Delaunay triangulation of the given points.
The Tusi couple (also known as Tusi's mechanism [1] [2] [3]) is a mathematical device in which a small circle rotates inside a larger circle twice the diameter of the smaller circle. Rotations of the circles cause a point on the circumference of the smaller circle to oscillate back and forth in linear motion along a diameter of the larger circle.