When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. No-slip condition - Wikipedia

    en.wikipedia.org/wiki/No-slip_condition

    The no-slip condition is an empirical assumption that has been useful in modelling many macroscopic experiments. It was one of three alternatives that were the subject of contention in the 19th century, with the other two being the stagnant-layer (a thin layer of stationary fluid on which the rest of the fluid flows) and the partial slip (a finite relative velocity between solid and fluid ...

  3. Self-similar solution - Wikipedia

    en.wikipedia.org/wiki/Self-similar_solution

    The self-similar solution of the second kind also appears in different contexts such as in boundary-layer problems subjected to small perturbations, [8] as was identified by Keith Stewartson, [9] Paul A. Libby and Herbert Fox. [10] Moffatt eddies are also a self-similar solution of the second kind.

  4. Rayleigh problem - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_problem

    The initial and the no-slip condition on the wall are (,) =, (, >) =, (, >) =, the last condition is due to the fact that the motion at = is not felt at infinity. The flow is only due to the motion of the plate, there is no imposed pressure gradient.

  5. Boundary layer - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer

    In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a no-slip boundary condition (zero velocity at the wall). The flow velocity then monotonically increases above the surface until ...

  6. Stokes problem - Wikipedia

    en.wikipedia.org/wiki/Stokes_problem

    The case for an oscillating far-field flow, with the plate held at rest, can easily be constructed from the previous solution for an oscillating plate by using linear superposition of solutions. Consider a uniform velocity oscillation u ( ∞ , t ) = U ∞ cos ⁡ ω t {\displaystyle u(\infty ,t)=U_{\infty }\cos \omega t} far away from the ...

  7. Talk:No-slip condition - Wikipedia

    en.wikipedia.org/wiki/Talk:No-slip_condition

    For a viscous fluid, the no slip boundary condition can't be justified from first principles. It is still an open question in science. For viscous fluid flow, it fits almost all macroscopic observations and so it is simply accepted in most fluid mechanics texts books but it is still only an empirical observation, not a fundamental law.

  8. Shocks and discontinuities (magnetohydrodynamics) - Wikipedia

    en.wikipedia.org/wiki/Shocks_and_discontinuities...

    In magnetohydrodynamics (MHD), shocks and discontinuities are transition layers where properties of a plasma change from one equilibrium state to another. The relation between the plasma properties on both sides of a shock or a discontinuity can be obtained from the conservative form of the MHD equations, assuming conservation of mass, momentum, energy and of .

  9. Slip ratio (gas–liquid flow) - Wikipedia

    en.wikipedia.org/wiki/Slip_ratio_(gas–liquid_flow)

    There are a number of correlations for slip ratio. For homogeneous flow, S = 1 (i.e. there is no slip). The Chisholm correlation [2] [3] is: = The Chisholm correlation is based on application of the simple annular flow model and equates the frictional pressure drops in the liquid and the gas phase.