When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    To do this, it must release the absorbed energy. This can happen in various ways. The extra energy can be converted into molecular motion and lost as heat, or re-emitted by the electron as light (fluorescence). The energy, but not the electron itself, may be passed onto another molecule; this is called resonance energy transfer.

  3. Photosynthetic efficiency - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_efficiency

    Many plants lose much of the remaining energy on growing roots. Most crop plants store ~0.25% to 0.5% of the sunlight in the product (corn kernels, potato starch, etc.). Photosynthesis increases linearly with light intensity at low intensity, but at higher intensity this is no longer the case (see Photosynthesis-irradiance curve). Above about ...

  4. Gallbladder - Wikipedia

    en.wikipedia.org/wiki/Gallbladder

    The gallbladder has a capacity of about 50 millilitres (1.8 imperial fluid ounces). [2] The gallbladder is shaped like a pear, with its tip opening into the cystic duct. [4] The gallbladder is divided into three sections: the fundus, body, and neck. The fundus is the rounded base, angled so that it faces the abdominal wall.

  5. Photosynthesis - Wikipedia

    en.wikipedia.org/wiki/Photosynthesis

    The latter occurs not only in plants but also in animals when the carbon and energy from plants is passed through a food chain. The fixation or reduction of carbon dioxide is a process in which carbon dioxide combines with a five-carbon sugar , ribulose 1,5-bisphosphate , to yield two molecules of a three-carbon compound, glycerate 3-phosphate ...

  6. Chemosynthesis - Wikipedia

    en.wikipedia.org/wiki/Chemosynthesis

    Venenivibrio stagnispumantis gains energy by oxidizing hydrogen gas.. In biochemistry, chemosynthesis is the biological conversion of one or more carbon-containing molecules (usually carbon dioxide or methane) and nutrients into organic matter using the oxidation of inorganic compounds (e.g., hydrogen gas, hydrogen sulfide) or ferrous ions as a source of energy, rather than sunlight, as in ...

  7. Photophosphorylation - Wikipedia

    en.wikipedia.org/wiki/Photophosphorylation

    All organisms produce a phosphate compound, ATP, which is the universal energy currency of life. In photophosphorylation, light energy is used to pump protons across a biological membrane, mediated by flow of electrons through an electron transport chain. This stores energy in a proton gradient.

  8. Ecological efficiency - Wikipedia

    en.wikipedia.org/wiki/Ecological_efficiency

    Terrestrial plants, on the other hand, grow slowly and expend much of the energy derived from primary production on their own respiration, resulting in much smaller P/B ratios of between 0.5 and 2.0. [6] Secondary production at sea tends to be more efficient as well, with up to a 15% transfer efficiency between trophic levels.

  9. Gall - Wikipedia

    en.wikipedia.org/wiki/Gall

    Galls are unique growths on plants, and how the plant's genetic instructions could produce these structures in response to external factors is still a fresh field of science. Genetic mechanisms of gall formation is a unique interplay between the parasite and the host plant in shaping the developmental trajectory of the gall organ.