Search results
Results From The WOW.Com Content Network
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...
In statistical mechanics and combinatorics, if one has a number distribution of labels, then the multinomial coefficients naturally arise from the binomial coefficients. Given a number distribution {n i} on a set of N total items, n i represents the number of items to be given the label i. (In statistical mechanics i is the label of the energy ...
Layers of Pascal's pyramid derived from coefficients in an upside-down ternary plot of the terms in the expansions of the powers of a trinomial – the number of terms is clearly a triangular number. In mathematics, a trinomial expansion is the expansion of a power of a sum of three terms into monomials. The expansion is given by
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
The above expansion holds because the derivative of e x with respect to x is also e x, and e 0 equals 1. This leaves the terms (x − 0) n in the numerator and n! in the denominator of each term in the infinite sum.
In this case, the matrix exponential e N can be computed directly from the series expansion, as the series terminates after a finite number of terms: e N = I + N + 1 2 N 2 + 1 6 N 3 + ⋯ + 1 ( q − 1 ) !
This number can be seen as equal to the one of the first definition, independently of any of the formulas below to compute it: if in each of the n factors of the power (1 + X) n one temporarily labels the term X with an index i (running from 1 to n), then each subset of k indices gives after expansion a contribution X k, and the coefficient of ...
An infinite Engel expansion in which all terms are equal is a geometric series. Erdős, Rényi, and Szüsz asked for nontrivial bounds on the length of the finite Engel expansion of a rational number x/y ; this question was answered by Erdős and Shallit, who proved that the number of terms in the expansion is O(y 1/3 + ε) for any ε > 0. [3]