Search results
Results From The WOW.Com Content Network
A chromophore is a molecule which absorbs light at a particular wavelength and reflects color as a result. Chromophores are commonly referred to as colored molecules for this reason. The word is derived from Ancient Greek χρῶμᾰ (chroma) 'color' and -φόρος (phoros) 'carrier of'.
Examples include the hydroxyl (−OH), amino (−NH 2), aldehyde (−CHO), and methyl mercaptan groups (−SCH 3). [ 2 ] An auxochrome is a functional group of atoms with one or more lone pairs of electrons when attached to a chromophore, alters both the wavelength and intensity of absorption .
Haem, for example, is a biochrome responsible for the red appearance of blood. It is found primarily in red blood cells (erythrocytes), which are generated in bone marrow throughout the life of an organism, rather than being formed during embryological development. Therefore, erythrocytes are not classified as chromatophores.
Two examples of carotenoids are lycopene and β-carotene. These molecules also absorb light most efficiently in the 400 – 500 nm range. Due to their absorption region, carotenoids appear red and yellow and provide most of the red and yellow colours present in fruits and flowers. The carotenoid molecules also serve a safeguarding function.
Visual phototransduction is the sensory transduction process of the visual system by which light is detected by photoreceptor cells (rods and cones) in the vertebrate retina.A photon is absorbed by a retinal chromophore (each bound to an opsin), which initiates a signal cascade through several intermediate cells, then through the retinal ganglion cells (RGCs) comprising the optic nerve.
Here are some Mandela effect examples that have confused me over the years — and many others too. Grab your friends and see which false memories you may share. 1.
The retinal chromophore differs from the animal 11-cis form and is an all-trans retinal isomer at the ground state, which isomerizes to 13-cis upon light activation; the chromophore is also known as microbial-type chromophore. Examples are bacterial sensory rhodopsins, channelrhodopsins, bacteriorhodopsins, halorhodopsins, proteorhodopsins ...
A donor chromophore, initially in its electronic excited state, may transfer energy to an acceptor chromophore through nonradiative dipole–dipole coupling. [2] The efficiency of this energy transfer is inversely proportional to the sixth power of the distance between donor and acceptor, making FRET extremely sensitive to small changes in ...