Search results
Results From The WOW.Com Content Network
The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...
For a vector with linear addressing, the element with index i is located at the address B + c · i, where B is a fixed base address and c a fixed constant, sometimes called the address increment or stride. If the valid element indices begin at 0, the constant B is simply the address of the first element of the array.
The inner product between two matrices having the same number of elements can be implemented with the auxiliary operator (:), which reshapes a given matrix into a column vector, and the transpose operator ': A(:)' * B(:);
The column space of this matrix is the vector space spanned by the column vectors. In linear algebra, the column space (also called the range or image) of a matrix A is the span (set of all possible linear combinations) of its column vectors. The column space of a matrix is the image or range of the corresponding matrix transformation.
Illustration of difference between row- and column-major ordering. In computing, row-major order and column-major order are methods for storing multidimensional arrays in linear storage such as random access memory. The difference between the orders lies in which elements of an array are contiguous in memory.
In linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m , then their outer product is an n × m matrix.
A coordinate vector is commonly organized as a column matrix (also called a column vector), which is a matrix with only one column. So, a column vector represents both a coordinate vector, and a vector of the original vector space. A linear map A from a vector space of dimension n into a vector space of dimension m maps a column vector
Every framed trace diagram corresponds to a multilinear function between tensor powers of the vector space V. The degree-1 vertices correspond to the inputs and outputs of the function, while the degree- n vertices correspond to the generalized Levi-Civita symbol (which is an anti-symmetric tensor related to the determinant ).