Search results
Results From The WOW.Com Content Network
The open-circuit saturation curve (also open-circuit characteristic, OCC) of a synchronous generator is a plot of the output open circuit voltage as a function of the excitation current or field. The curve is typically plotted alongside the synchronous impedance curve .
The above expression for vapor quality can be expressed as: = where is equal to either specific enthalpy, specific entropy, specific volume or specific internal energy, is the value of the specific property of saturated liquid state and is the value of the specific property of the substance in dome zone, which we can find both liquid and vapor .
In a synchronous generator, [1] the short circuit ratio is the ratio of field current required to produce rated armature voltage at the open circuit to the field current required to produce the rated armature current at short circuit. [1] [2] This ratio can also be expressed as an inverse of the saturated [3] direct-axis synchronous reactance ...
The saturation with respect to water cannot be measured much below –50 °C, so manufacturers should use one of the following expressions for calculating saturation vapour pressure relative to water at the lowest temperatures – Wexler (1976, 1977), [1] [2] reported by Flatau et al. (1992)., [3] Hyland and Wexler (1983) or Sonntag (1994 ...
The Tetens equation is an equation to calculate the saturation vapour pressure of water over liquid and ice. It is named after its creator, O. Tetens who was an early German meteorologist. It is named after its creator, O. Tetens who was an early German meteorologist.
Tuning a control loop is the adjustment of its control parameters (proportional band/gain, integral gain/reset, derivative gain/rate) to the optimum values for the desired control response. Stability (no unbounded oscillation) is a basic requirement, but beyond that, different systems have different behavior, different applications have ...
The Richards equation represents the movement of water in unsaturated soils, and is attributed to Lorenzo A. Richards who published the equation in 1931. [1] It is a quasilinear partial differential equation ; its analytical solution is often limited to specific initial and boundary conditions. [ 2 ]
Usually applied for transients after a short circuit current. Three states are considered: [5] the steady-state is the normal operating condition with the armature magnetic flux going through the rotor; the sub-transient state (″) is the one the generator enters immediately after the fault (short circuit). In this state the armature flux is ...