When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    Hamilton's equations give the time evolution of coordinates and conjugate momenta in four first-order differential equations, ˙ = ˙ = ⁡ ˙ = ⁡ ⁡ ⁡ ˙ = Momentum ⁠ ⁠, which corresponds to the vertical component of angular momentum ⁠ = ⁡ ⁡ ˙ ⁠, is a constant of motion. That is a consequence of the rotational symmetry of the ...

  3. Canonical transformation - Wikipedia

    en.wikipedia.org/wiki/Canonical_transformation

    Restricted canonical transformations are coordinate transformations where transformed coordinates Q and P do not have explicit time dependence, i.e., = (,) and = (,).The functional form of Hamilton's equations is ˙ =, ˙ = In general, a transformation (q, p) → (Q, P) does not preserve the form of Hamilton's equations but in the absence of time dependence in transformation, some ...

  4. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  5. Hamilton's principle - Wikipedia

    en.wikipedia.org/wiki/Hamilton's_principle

    Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.

  6. Canonical coordinates - Wikipedia

    en.wikipedia.org/wiki/Canonical_coordinates

    Canonical coordinates are defined as a special set of coordinates on the cotangent bundle of a manifold.They are usually written as a set of (,) or (,) with the x ' s or q ' s denoting the coordinates on the underlying manifold and the p ' s denoting the conjugate momentum, which are 1-forms in the cotangent bundle at point q in the manifold.

  7. Canonical commutation relation - Wikipedia

    en.wikipedia.org/wiki/Canonical_commutation_relation

    According to the correspondence principle, in certain limits the quantum equations of states must approach Hamilton's equations of motion.The latter state the following relation between the generalized coordinate q (e.g. position) and the generalized momentum p: {˙ = = {,}; ˙ = = {,}.

  8. Poisson bracket - Wikipedia

    en.wikipedia.org/wiki/Poisson_bracket

    In addition, in canonical coordinates (with {,} = {,} = and {,} =), Hamilton's equations for the time evolution of the system follow immediately from this formula. It also follows from (1) that the Poisson bracket is a derivation ; that is, it satisfies a non-commutative version of Leibniz's product rule :

  9. Hamilton–Jacobi equation - Wikipedia

    en.wikipedia.org/wiki/Hamilton–Jacobi_equation

    The motion of an -isosurface as a function of time is defined by the motions of the particles beginning at the points on the isosurface. The motion of such an isosurface can be thought of as a wave moving through -space, although it does not obey the wave equation exactly.