Search results
Results From The WOW.Com Content Network
Kirchhoff's current law is the basis of nodal analysis. In electric circuits analysis, nodal analysis, node-voltage analysis, or the branch current method is a method of determining the voltage (potential difference) between "nodes" (points where elements or branches connect) in an electrical circuit in terms of the branch currents.
In electrical engineering, electrical length is a dimensionless parameter equal to the physical length of an electrical conductor such as a cable or wire, divided by the wavelength of alternating current at a given frequency traveling through the conductor. [1] [2] [3] In other words, it is the length of the conductor measured in wavelengths.
Writing the BCEs in terms of the node voltages saves one step. If the BCEs were written in terms of the branch voltages, one more step, i.e., replacing the branches voltages for the node ones, would be necessary. In this article the letter "e" is used to name the node voltages, while the letter "v" is used to name the branch voltages. Step 3
The number next to each node is the distance from that node to the square red node as measured by the length of the shortest path. The green edges illustrate one of the two shortest paths between the red square node and the red circle node. The closeness of the red square node is therefore 5/(1+1+1+2+2) = 5/7.
During execution, the distance of a node N is the length of the shortest path discovered so far between the starting node and N. [18] From the unvisited set, select the current node to be the one with the smallest (finite) distance; initially, this is the starting node (distance zero).
The longitude of the ascending node, also known as the right ascension of the ascending node, is one of the orbital elements used to specify the orbit of an object in space. Denoted with the symbol Ω , it is the angle from a specified reference direction, called the origin of longitude , to the direction of the ascending node (☊), as ...
The round-trip time or ping time is the time from the start of the transmission from the sending node until a response (for example an ACK packet or ping ICMP response) is received at the same node. It is affected by packet delivery time as well as the data processing delay, which depends on the load on the responding node. If the sent data ...
The resistance distance between vertices and is proportional to the commute time, of a random walk between and .The commute time is the expected number of steps in a random walk that starts at , visits , and returns to .