When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Direction cosine - Wikipedia

    en.wikipedia.org/wiki/Direction_cosine

    More generally, direction cosine refers to the cosine of the angle between any two vectors. They are useful for forming direction cosine matrices that express one set of orthonormal basis vectors in terms of another set, or for expressing a known vector in a different basis. Simply put, direction cosines provide an easy method of representing ...

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...

  4. Triad method - Wikipedia

    en.wikipedia.org/wiki/Triad_method

    The TRIAD method is the earliest published algorithm for determining spacecraft attitude, which was first introduced by Harold Black in 1964. [1] [2] [3] Given the knowledge of two vectors in the reference and body coordinates of a satellite, the TRIAD algorithm obtains the direction cosine matrix relating to both frames.

  5. Orientation (geometry) - Wikipedia

    en.wikipedia.org/wiki/Orientation_(geometry)

    For example, the orientation in space of a line, line segment, or vector can be specified with only two values, for example two direction cosines. Another example is the position of a point on the Earth, often described using the orientation of a line joining it with the Earth's center, measured using the two angles of longitude and latitude.

  6. Rigid body dynamics - Wikipedia

    en.wikipedia.org/wiki/Rigid_body_dynamics

    The rotations were described by orthogonal matrices referred to as rotation matrices or direction cosine matrices. When used to represent an orientation, a rotation matrix is commonly called orientation matrix, or attitude matrix. The above-mentioned Euler vector is the eigenvector of a rotation matrix (a rotation matrix has a unique real ...

  7. Trigonometric functions of matrices - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions_of...

    If X is a diagonal matrix, sin X and cos X are also diagonal matrices with (sin X) nn = sin(X nn) and (cos X) nn = cos(X nn), that is, they can be calculated by simply taking the sines or cosines of the matrices's diagonal components. The analogs of the trigonometric addition formulas are true if and only if XY = YX: [2]

  8. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    This matrix equation relates the scalar components of a in the n basis (u,v, and w) with those in the e basis (p, q, and r). Each matrix element c jk is the direction cosine relating n j to e k. [19] The term direction cosine refers to the cosine of the angle between two unit vectors, which is also equal to their dot product. [19] Therefore,

  9. Conversion between quaternions and Euler angles - Wikipedia

    en.wikipedia.org/wiki/Conversion_between...

    where α is a simple rotation angle (the value in radians of the angle of rotation) and cos(β x), cos(β y) and cos(β z) are the "direction cosines" of the angles between the three coordinate axes and the axis of rotation. (Euler's Rotation Theorem).