Search results
Results From The WOW.Com Content Network
Injective composition: the second function need not be injective. A function is injective (one-to-one) if each possible element of the codomain is mapped to by at most one argument. Equivalently, a function is injective if it maps distinct arguments to distinct images. An injective function is an injection. [1] The formal definition is the ...
In mathematics, an injective function (also known as injection, or one-to-one function [1]) is a function f that maps distinct elements of its domain to distinct elements of its codomain; that is, x 1 ≠ x 2 implies f(x 1) ≠ f(x 2) (equivalently by contraposition, f(x 1) = f(x 2) implies x 1 = x 2).
Inclusion maps are seen in algebraic topology where if is a strong deformation retract of , the inclusion map yields an isomorphism between all homotopy groups (that is, it is a homotopy equivalence). Inclusion maps in geometry come in different kinds: for example embeddings of submanifolds.
In general topology, an embedding is a homeomorphism onto its image. [3] More explicitly, an injective continuous map : between topological spaces and is a topological embedding if yields a homeomorphism between and () (where () carries the subspace topology inherited from ).
In the category of metric spaces, Met, an injective object is an injective metric space, and the injective hull of a metric space is its tight span. In the category of T 0 spaces and continuous mappings, an injective object is always a Scott topology on a continuous lattice, and therefore it is always sober and locally compact.
Such an injective mapping from P (S) to integers is arbitrary, so this representation of all the subsets of S is not unique, but the sort order of the enumerated set does not change its cardinality. (E.g., { ( y , 1), ( z , 2), ( x , 3) } can be used to construct another injective mapping from P ( S ) to the integers without changing the number ...
is an injective function at every point p of M (where T p X denotes the tangent space of a manifold X at a point p in X and D p f is the derivative (pushforward) of the map f at point p). Equivalently, f is an immersion if its derivative has constant rank equal to the dimension of M: [2] = .
A Jordan arc in the plane is the image of an injective continuous map of a closed and bounded interval [a, b] into the plane. It is a plane curve that is not necessarily smooth nor algebraic. Alternatively, a Jordan curve is the image of a continuous map φ: [0,1] → R 2 such that φ(0) = φ(1) and the restriction of φ to [0,1) is