Search results
Results From The WOW.Com Content Network
Similar to the one-dimensional case, an asterisk is used to represent the convolution operation. The number of dimensions in the given operation is reflected in the number of asterisks. For example, an M-dimensional convolution would be written with M asterisks. The following represents a M-dimensional convolution of discrete signals:
The dot product of a dyadic with a vector gives another vector, and taking the dot product of this result gives a scalar derived from the dyadic. The effect that a given dyadic has on other vectors can provide indirect physical or geometric interpretations. Dyadic notation was first established by Josiah Willard Gibbs in 1884. The notation and ...
A two-vector or bivector [1] is a tensor of type () and it is the dual of a two-form, meaning that it is a linear functional which maps two-forms to the real numbers (or more generally, to scalars). The tensor product of a pair of vectors is a two-vector. Then, any two-form can be expressed as a linear combination of tensor products of pairs of ...
The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.
A famous example is the recurrence for the Fibonacci numbers, = + where the order is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients , because the coefficients of the linear function (1 and 1) are constants that do not depend on n . {\displaystyle n.}
Raising and lowering is then done in coordinates. Given a vector with components , we can contract with the metric to obtain a covector: = and this is what we mean by lowering the index. Conversely, contracting a covector with the inverse metric gives a vector:
C, C++, Fortran 2003 2023.1 / 03.2023 Non-free Intel Simplified Software License Numerical analysis library optimized for Intel CPUs and GPUs. C++ SYCL based reference API implementation available in source for free. Math.NET Numerics: C. Rüegg, M. Cuda, et al. C# 2009 5.0.0 / 04.2022 Free MIT License
Since ε 2 = 0 for dual numbers, exp(aε) = 1 + aε, all other terms of the exponential series vanishing. Let F = {1 + εr : r ∈ H}, ε 2 = 0. Note that F is stable under the rotation q → p −1 qp and under the translation (1 + εr)(1 + εs) = 1 + ε(r + s) for any vector quaternions r and s. F is a 3-flat in the eight-dimensional space of ...