Search results
Results From The WOW.Com Content Network
A point location query is performed by following a path in this graph, starting from the initial trapezoid, and at each step choosing the replacement trapezoid that contains the query point, until reaching a trapezoid that has not been replaced. The expected depth of a search in this digraph, starting from any query point, is O(log n).
In calculus, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) [a] is a technique for numerical integration, i.e., approximating the definite integral: (). The trapezoidal rule works by approximating the region under the graph of the function f ( x ) {\displaystyle f(x)} as a trapezoid and calculating its area.
A right trapezoid (also called right-angled trapezoid) has two adjacent right angles. [15] Right trapezoids are used in the trapezoidal rule for estimating areas under a curve. An acute trapezoid has two adjacent acute angles on its longer base edge. An obtuse trapezoid on the other hand has one acute and one obtuse angle on each base.
To estimate the area under a curve the trapezoid rule is applied first to one-piece, then two, then four, and so on. One-piece. Note since it starts and ends at zero, this approximation yields zero area. Two-piece Four-piece Eight-piece. After trapezoid rule estimates are obtained, Richardson extrapolation is applied.
In geometry, a frustum (Latin for 'morsel'); [a] (pl.: frusta or frustums) is the portion of a solid (normally a pyramid or a cone) that lies between two parallel planes cutting the solid.
On the other hand, though, if the middle part of the trapezoid is not completely flat, or if one or both of the side ramps are not perfectly linear, then the trapezoidal distribution in question is a generalized trapezoidal distribution, [1] [2] and more complicated and context-dependent rules may apply.
Many of these problems are easily solvable provided that other geometric transformations are allowed; for example, neusis construction can be used to solve the former two problems. In terms of algebra , a length is constructible if and only if it represents a constructible number , and an angle is constructible if and only if its cosine is a ...
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23