Search results
Results From The WOW.Com Content Network
One advantage is a left-handed catcher's ability to frame a right-handed pitcher's breaking balls. A right-handed catcher catches a right-hander's breaking ball across his body, with his glove moving out of the strike zone. A left-handed catcher would be able to catch the pitch moving into the strike zone and create a better target for the umpire.
In biology, 19 of the 20 natural amino acids are homochiral, being L-chiral (left-handed), while sugars are D-chiral (right-handed). [1] Homochirality can also refer to enantiopure substances in which all the constituents are the same enantiomer (a right-handed or left-handed version of an atom or molecule), but some sources discourage this use ...
Z-DNA is one of the many possible double helical structures of DNA. It is a left-handed double helical structure in which the helix winds to the left in a zigzag pattern, instead of to the right, like the more common B-DNA form. Z-DNA is thought to be one of three biologically active double-helical structures along with A-DNA and B-DNA.
The identification of rare mutations in this gene that are more common in left-handers suggests that microtubules are involved in setting up the brain's normal asymmetries, Francks said.
Unlike monozygotic twins, dizygotic twins result from the fertilization of two eggs by two separate sperms within the same pregnancy. This causes the set of twins to have genetic variations, so their genetic information is unique from one another. In studies conducted between 1924 and 1976, there were more left-handed monozygotic twins.
The two strands can come apart—a process known as melting—to form two single-stranded DNA (ssDNA) molecules. Melting occurs at high temperatures, low salt and high pH (low pH also melts DNA, but since DNA is unstable due to acid depurination, low pH is rarely used).
At some undetermined point, the RecBCD subunits disassemble. Step 6: The RecA-ssDNA complex invades an intact homologous duplex DNA to produce a D-loop, which can be resolved into intact, recombinant DNA in two ways. Step 7: The D-loop is cut and anneals with the gap in the first DNA to produce a Holliday junction.
The illustration shows an inverted repeat undergoing cruciform extrusion. DNA in the region of the inverted repeat unwinds and then recombines, forming a four-way junction with two stem-loop structures. The cruciform structure occurs because the inverted repeat sequences self-pair to each other on their own strand. [22]