Ad
related to: stokes misnamed theorems in probability definition statistics practicestudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
Stokes' theorem. It is named after Sir George Gabriel Stokes (1819–1903), although the first known statement of the theorem is by William Thomson (Lord Kelvin) and appears in a letter of his to Stokes. The theorem acquired its name from Stokes' habit of including it in the Cambridge prize examinations. In 1854 he asked his students to prove ...
Central limit theorem; Characterization of probability distributions; Cochran's theorem; Complete class theorem; Continuous mapping theorem; Cox's theorem; Cramér's decomposition theorem; Craps principle
Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...
An illustration of Stokes' theorem, with surface Σ, its boundary ∂Σ and the normal vector n.The direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule (i.e., the right hand the fingers circulate along ∂Σ and the thumb is directed along n).
In probability theory and statistics, the law of the unconscious statistician, or LOTUS, is a theorem which expresses the expected value of a function g(X) of a random variable X in terms of g and the probability distribution of X. The form of the law depends on the type of random variable X in question.
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations , probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms .
Bayes' theorem (probability) Bertrand's ballot theorem (probability theory, combinatorics) Burke's theorem (probability theory, queueing theory) Central limit theorem (probability) Clark–Ocone theorem (stochastic processes) Continuous mapping theorem (probability theory) Cramér's theorem (large deviations) (probability)
The theory of statistics provides a basis for the whole range of techniques, in both study design and data analysis, that are used within applications of statistics. [1] [2] The theory covers approaches to statistical-decision problems and to statistical inference, and the actions and deductions that satisfy the basic principles stated for these different approaches.