When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Polynomial ring - Wikipedia

    en.wikipedia.org/wiki/Polynomial_ring

    In other words, K[X] has the following universal property: For every ring R containing K, and every element a of R, there is a unique algebra homomorphism from K[X] to R that fixes K, and maps X to a. As for all universal properties, this defines the pair (K[X], X) up to a unique isomorphism, and can therefore be taken as a definition of K[X].

  3. Universal property - Wikipedia

    en.wikipedia.org/wiki/Universal_property

    In particular, the concept of universal property allows a simple proof that all constructions of real numbers are equivalent: it suffices to prove that they satisfy the same universal property. Technically, a universal property is defined in terms of categories and functors by means of a universal morphism (see § Formal definition , below).

  4. Ore extension - Wikipedia

    en.wikipedia.org/wiki/Ore_extension

    The Weyl algebras are Ore extensions, with R any commutative polynomial ring, σ the identity ring endomorphism, and δ the polynomial derivative. Ore algebras are a class of iterated Ore extensions under suitable constraints that permit to develop a noncommutative extension of the theory of Gröbner bases.

  5. Product of rings - Wikipedia

    en.wikipedia.org/wiki/Product_of_rings

    If R = Π i∈I R i is a product of rings, then for every i in I we have a surjective ring homomorphism p i : R → R i which projects the product on the i th coordinate. The product R together with the projections p i has the following universal property:

  6. Ring (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ring_(mathematics)

    For example, choosing a basis, a symmetric algebra satisfies the universal property and so is a polynomial ring. To give an example, let S be the ring of all functions from R to itself; the addition and the multiplication are those of functions. Let x be the identity function.

  7. Projective module - Wikipedia

    en.wikipedia.org/wiki/Projective_module

    However, every projective module is a free module if the ring is a principal ideal domain such as the integers, or a (multivariate) polynomial ring over a field (this is the Quillen–Suslin theorem). Projective modules were first introduced in 1956 in the influential book Homological Algebra by Henri Cartan and Samuel Eilenberg.

  8. Spectrum of a ring - Wikipedia

    en.wikipedia.org/wiki/Spectrum_of_a_ring

    As the latter formulation makes clear, a polynomial ring is the group algebra over a vector space, and writing in terms of corresponds to choosing a basis for the vector space. Then an ideal I, or equivalently a module R / I , {\displaystyle R/I,} is a cyclic representation of R (cyclic meaning generated by 1 element as an R -module; this ...

  9. Direct limit - Wikipedia

    en.wikipedia.org/wiki/Direct_limit

    The same is true for a directed collection of subgroups of a given group, or a directed collection of subrings of a given ring, etc. The weak topology of a CW complex is defined as a direct limit. Let X {\displaystyle X} be any directed set with a greatest element m {\displaystyle m} .