Search results
Results From The WOW.Com Content Network
A number n that has more divisors than any x < n is a highly composite number (though the first two such numbers are 1 and 2). Composite numbers have also been called "rectangular numbers", but that name can also refer to the pronic numbers, numbers that are the product of two consecutive integers. Yet another way to classify composite numbers ...
Highly composite numbers greater than 6 are also abundant numbers. One need only look at the three largest proper divisors of a particular highly composite number to ascertain this fact. It is false that all highly composite numbers are also Harshad numbers in base 10. The first highly composite number that is not a Harshad number is ...
Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.
Composite numbers can be arranged into rectangles but prime numbers cannot. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number.
In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent.
In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number. For example, the logarithm of 1000 to base 10 is 3 , because 1000 is 10 to the 3 rd power: 1000 = 10 3 = 10 × 10 × 10 .
Base systems corresponding to primorials (such as base 30, not to be confused with the primorial number system) have a lower proportion of repeating fractions than any smaller base. Every primorial is a sparsely totient number. [10] The n-compositorial of a composite number n is the product of all composite numbers up to and including n. [11]
If z 0 is a decomposed prime or the ramified prime 1 + i (that is, if its norm N(z 0) is a prime number, which is either 2 or a prime congruent to 1 modulo 4), then the residue class field has a prime number of elements (that is, N(z 0)). It is thus isomorphic to the field of the integers modulo N(z 0).