When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

  3. List of two-dimensional geometric shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_two-dimensional...

    This is a list of two-dimensional geometric shapes in Euclidean and other geometries. For mathematical objects in more dimensions, see list of mathematical shapes. For a broader scope, see list of shapes.

  4. Perimeter of an ellipse - Wikipedia

    en.wikipedia.org/wiki/Perimeter_of_an_ellipse

    An ellipse has two axes and two foci Unlike most other elementary shapes, such as the circle and square , there is no algebraic equation to determine the perimeter of an ellipse . Throughout history, a large number of equations for approximations and estimates have been made for the perimeter of an ellipse.

  5. List of curves - Wikipedia

    en.wikipedia.org/wiki/List_of_curves

    Hemihelix, a quasi-helical shape characterized by multiple tendril perversions Tendril perversion (a transition between back-to-back helices) Seiffert's spiral [4]

  6. Superellipse - Wikipedia

    en.wikipedia.org/wiki/Superellipse

    Examples of superellipses for =, =. A superellipse, also known as a Lamé curve after Gabriel Lamé, is a closed curve resembling the ellipse, retaining the geometric features of semi-major axis and semi-minor axis, and symmetry about them, but defined by an equation that allows for various shapes between a rectangle and an ellipse.

  7. Evolute - Wikipedia

    en.wikipedia.org/wiki/Evolute

    The evolute of a curve (in this case, an ellipse) is the envelope of its normals. In the differential geometry of curves, the evolute of a curve is the locus of all its centers of curvature. That is to say that when the center of curvature of each point on a curve is drawn, the resultant shape will be the evolute of that curve.

  8. Flattening - Wikipedia

    en.wikipedia.org/wiki/Flattening

    Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution respectively. Other terms used are ellipticity , or oblateness . The usual notation for flattening is f {\displaystyle f} and its definition in terms of the semi-axes a {\displaystyle a} and b {\displaystyle b} of ...

  9. n-ellipse - Wikipedia

    en.wikipedia.org/wiki/N-ellipse

    In geometry, the n-ellipse is a generalization of the ellipse allowing more than two foci. [1] n-ellipses go by numerous other names, including multifocal ellipse, [2] polyellipse, [3] egglipse, [4] k-ellipse, [5] and Tschirnhaus'sche Eikurve (after Ehrenfried Walther von Tschirnhaus). They were first investigated by James Clerk Maxwell in 1846 ...