When.com Web Search

  1. Ad

    related to: least upper bound proof examples statistics calculator 2 variables

Search results

  1. Results From The WOW.Com Content Network
  2. Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_inequality

    Chebyshev's inequality then follows by dividing by k 2 σ 2. This proof also shows why the bounds are quite loose in typical cases: the conditional expectation on the event where |X − μ| < kσ is thrown away, and the lower bound of k 2 σ 2 on the event |X − μ| ≥ kσ can be quite poor.

  3. Least-upper-bound property - Wikipedia

    en.wikipedia.org/wiki/Least-upper-bound_property

    More generally, one may define upper bound and least upper bound for any subset of a partially ordered set X, with “real number” replaced by “element of X ”. In this case, we say that X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound in X.

  4. Hoeffding's inequality - Wikipedia

    en.wikipedia.org/wiki/Hoeffding's_inequality

    Note that the inequalities also hold when the X i have been obtained using sampling without replacement; in this case the random variables are not independent anymore. A proof of this statement can be found in Hoeffding's paper. For slightly better bounds in the case of sampling without replacement, see for instance the paper by Serfling (1974).

  5. Markov's inequality - Wikipedia

    en.wikipedia.org/wiki/Markov's_inequality

    The bound combines the level with the average value of . In probability theory, Markov's inequality gives an upper bound on the probability that a non-negative random variable is greater than or equal to some positive constant. Markov's inequality is tight in the sense that for each chosen positive constant, there exists a random variable such ...

  6. Monotone convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Monotone_convergence_theorem

    In its simplest form, it says that a non-decreasing bounded-above sequence of real numbers ... converges to its smallest upper bound, its supremum. Likewise, a non-increasing bounded-below sequence converges to its largest lower bound, its infimum. In particular, infinite sums of non-negative numbers converge to the supremum of the partial sums ...

  7. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    Then has an upper bound (, for example, or ) but no least upper bound in : If we suppose is the least upper bound, a contradiction is immediately deduced because between any two reals and (including and ) there exists some rational , which itself would have to be the least upper bound (if >) or a member of greater than (if <).

  8. Upper and lower bounds - Wikipedia

    en.wikipedia.org/wiki/Upper_and_lower_bounds

    13934 and other numbers x such that x ≥ 13934 would be an upper bound for S. The set S = {42} has 42 as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for that S. Every subset of the natural numbers has a lower bound since the natural numbers have a least element (0 or 1, depending on ...

  9. Minimum-variance unbiased estimator - Wikipedia

    en.wikipedia.org/wiki/Minimum-variance_unbiased...

    If k exemplars are chosen (without replacement) from a discrete uniform distribution over the set {1, 2, ..., N} with unknown upper bound N, the MVUE for N is +, where m is the sample maximum. This is a scaled and shifted (so unbiased) transform of the sample maximum, which is a sufficient and complete statistic.