Ads
related to: irreparable integral equation
Search results
Results From The WOW.Com Content Network
This equation is a special form of the more general weakly singular Volterra integral equation of the first kind, called Abel's integral equation: [7] = Strongly singular: An integral equation is called strongly singular if the integral is defined by a special regularisation, for example, by the Cauchy principal value.
and the problem is, given the continuous kernel function and the function , to find the function .. An important case of these types of equation is the case when the kernel is a function only of the difference of its arguments, namely (,) = (), and the limits of integration are ±∞, then the right hand side of the equation can be rewritten as a convolution of the functions and and therefore ...
The T(b) theorem provides sufficient conditions for a singular integral operator to be a Calderón–Zygmund operator, that is for a singular integral operator associated to a Calderón–Zygmund kernel to be bounded on L 2. In order to state the result we must first define some terms.
An improper Riemann integral of the first kind, where the region in the plane implied by the integral is infinite in extent horizontally. The area of such a region, which the integral represents, may be finite (as here) or infinite. An improper Riemann integral of the second kind, where the implied region is infinite vertically.
An even larger, multivolume table is the Integrals and Series by Prudnikov, Brychkov, and Marichev (with volumes 1–3 listing integrals and series of elementary and special functions, volume 4–5 are tables of Laplace transforms).
Given a collection of differential 1-forms , =,, …, on an -dimensional manifold , an integral manifold is an immersed (not necessarily embedded) submanifold whose tangent space at every point is annihilated by (the pullback of) each .
In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form () (,), where < (), < and the integrands are functions dependent on , the derivative of this integral is expressible as (() (,)) = (, ()) (, ()) + () (,) where the partial derivative indicates that inside the integral, only the ...
The Cauchy formula for repeated integration, named after Augustin-Louis Cauchy, allows one to compress n antiderivatives of a function into a single integral (cf. Cauchy's formula). For non-integer n it yields the definition of fractional integrals and (with n < 0) fractional derivatives.