When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    This visualization also explains why integration by parts may help find the integral of an inverse function f −1 (x) when the integral of the function f(x) is known. Indeed, the functions x(y) and y(x) are inverses, and the integral ∫ x dy may be calculated as above from knowing the integral ∫ y dx.

  3. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    An even larger, multivolume table is the Integrals and Series by Prudnikov, Brychkov, and Marichev (with volumes 1–3 listing integrals and series of elementary and special functions, volume 4–5 are tables of Laplace transforms).

  4. Improper integral - Wikipedia

    en.wikipedia.org/wiki/Improper_integral

    In such cases, the improper Riemann integral allows one to calculate the Lebesgue integral of the function. Specifically, the following theorem holds ( Apostol 1974 , Theorem 10.33): If a function f is Riemann integrable on [ a , b ] for every b ≥ a , and the partial integrals

  5. Integration by reduction formulae - Wikipedia

    en.wikipedia.org/wiki/Integration_by_reduction...

    To compute the integral, we set n to its value and use the reduction formula to express it in terms of the (n – 1) or (n – 2) integral. The lower index integral can be used to calculate the higher index ones; the process is continued repeatedly until we reach a point where the function to be integrated can be computed, usually when its index is 0 or 1.

  6. Cauchy principal value - Wikipedia

    en.wikipedia.org/wiki/Cauchy_principal_value

    The result of the procedure for principal value is the same as the ordinary integral; since it no longer matches the definition, it is technically not a "principal value". The Cauchy principal value can also be defined in terms of contour integrals of a complex-valued function f ( z ) : z = x + i y , {\displaystyle f(z):z=x+i\,y\;,} with x , y ...

  7. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    To compute integrals in multiple dimensions, one approach is to phrase the multiple integral as repeated one-dimensional integrals by applying Fubini's theorem (the tensor product rule). This approach requires the function evaluations to grow exponentially as the number of dimensions increases.

  8. Fubini's theorem - Wikipedia

    en.wikipedia.org/wiki/Fubini's_theorem

    The first two integrals are iterated integrals with respect to two measures, respectively, and the third is an integral with respect to the product measure. The partial integrals ∫ Y f ( x , y ) d y {\textstyle \int _{Y}f(x,y)\,{\text{d}}y} and ∫ X f ( x , y ) d x {\textstyle \int _{X}f(x,y)\,{\text{d}}x} need not be defined everywhere, but ...

  9. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    When evaluating definite integrals by substitution, one may calculate the antiderivative fully first, then apply the boundary conditions. In that case, there is no need to transform the boundary terms. Alternatively, one may fully evaluate the indefinite integral first then apply the boundary conditions. This becomes especially handy when ...