When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pasteur effect - Wikipedia

    en.wikipedia.org/wiki/Pasteur_effect

    First, glucose metabolism is faster through ethanol fermentation because it involves fewer enzymes and limits all reactions to the cytoplasm. Second, ethanol has bactericidal activity by causing damage to the cell membrane and protein denaturing, allowing yeast fungus to outcompete environmental bacteria for resources. [6]

  3. Photosynthetic efficiency - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_efficiency

    In actuality, however, plants do not absorb all incoming sunlight (due to reflection, respiration requirements of photosynthesis and the need for optimal solar radiation levels) and do not convert all harvested energy into biomass, which results in a maximum overall photosynthetic efficiency of 3 to 6% of total solar radiation. [1]

  4. Photosynthesis - Wikipedia

    en.wikipedia.org/wiki/Photosynthesis

    In plants and algae, photosynthesis takes place in organelles called chloroplasts. A typical plant cell contains about 10 to 100 chloroplasts. The chloroplast is enclosed by a membrane. This membrane is composed of a phospholipid inner membrane, a phospholipid outer membrane, and an intermembrane space.

  5. Phloem - Wikipedia

    en.wikipedia.org/wiki/Phloem

    Phloem (/ ˈ f l oʊ. əm /, FLOH-əm) is the living tissue in vascular plants that transports the soluble organic compounds made during photosynthesis and known as photosynthates, in particular the sugar sucrose, [1] to the rest of the plant.

  6. Pressure flow hypothesis - Wikipedia

    en.wikipedia.org/wiki/Pressure_Flow_Hypothesis

    The pressure flow hypothesis, also known as the mass flow hypothesis, is the best-supported theory to explain the movement of sap through the phloem of plants. [1] [2] It was proposed in 1930 by Ernst Münch, a German plant physiologist. [3]

  7. PEP group translocation - Wikipedia

    en.wikipedia.org/wiki/PEP_group_translocation

    The glucose PTS system in E. coli and B. subtilis. The pathway can be read from right to left, with glucose entering the cell and having a phosphate group transferred to it by EIIB. The mannose PTS in E. coli has the same overall structure as the B. subtilis glucose PTS, i.e. the IIABC domains are fused into one protein.

  8. Active transport - Wikipedia

    en.wikipedia.org/wiki/Active_transport

    Active transport enables these cells to take up salts from this dilute solution against the direction of the concentration gradient. For example, chloride (Cl −) and nitrate (NO 3 −) ions exist in the cytosol of plant cells, and need to be transported into the vacuole. While the vacuole has channels for these ions, transportation of them is ...

  9. Xylem - Wikipedia

    en.wikipedia.org/wiki/Xylem

    Water is lost much faster than CO 2 is absorbed, so plants need to replace it, and have developed systems to transport water from the moist soil to the site of photosynthesis. [33] Early plants sucked water between the walls of their cells, then evolved the ability to control water loss (and CO 2 acquisition) through the use of stomata ...