Search results
Results From The WOW.Com Content Network
Tests done by J.S. Belrose (1994) [7] showed that though the conventional T²FD length is close to a full-size 80 meter (3.5–4.0 MHz) antenna, the antenna starts to suffer serious signal loss both on transmit and receive below 10 MHz (30 m), with the 80 meter band signals −10 dB down (90% power loss) from a reference dipole at 10 MHz.
German physicist Heinrich Hertz first demonstrated the existence of radio waves in 1887 using what we now know as a dipole antenna (with capacitative end-loading). On the other hand, Guglielmo Marconi empirically found that he could just ground the transmitter (or one side of a transmission line, if used) dispensing with one half of the antenna, thus realizing the vertical or monopole antenna.
Also called a multi-dipole – a common broadband and / or wideband dipole variant that superficially resembles the bow-tie antenna, but is electrically different. It is a composite of pairs of dipole arms; both arms of one of the dipoles are equal-length, but each dipole pair is a different length from every other pair.
This simplified arrangement has several advantages, including a shorter ground distance between the ends. For example, a dipole antenna for the 80 meter band requires a ground length of about 140 feet (43 m) from end to end. An inverted vee with a 40-foot (12 m) apex elevation requires only 115 feet (35 m).
The nominal "80 meter" band begins at 3.5 MHz (85.7 m wavelength) and goes up to 4.0 MHz (74.9 m wavelength).The upper part of the band, mostly used for voice, is often referred to as 75 meters, since in Region 2, the wavelengths in that section are between 80–75 meters (adjacent to or overlapping a shortwave broadcast band called by the same name: "75 m").
The coil is added at the base of the whip (called a base-loaded whip) or occasionally in the middle (center-loaded whip). In the most widely used form, the rubber ducky antenna, the loading coil is integrated with the antenna itself by making the whip out of a narrow helix of springy wire. The helix distributes the inductance along the antenna ...
In general terms, at any given frequency the log-periodic design operates somewhat similar to a three-element Yagi antenna; the dipole element closest to resonant at the operating frequency acts as a driven element, with the two adjacent elements on either side as director and reflector to increase the gain, the shorter element in front acting ...
The HB9XBG antenna is a vertical dipole antenna for short wave radio amateurs. It was developed by the Swiss radio amateur Walter Kägi, whose call sign HB9XBG is also the designation of the antenna. [1] During the test phase in 2020, HB9XBG built two vertical dipoles – one for the 20-metre amateur radio band and another for the 40-metre band.