Search results
Results From The WOW.Com Content Network
Both of these are special cases of a preorder: an antisymmetric preorder is a partial order, and a symmetric preorder is an equivalence relation. Moreover, a preorder on a set X {\displaystyle X} can equivalently be defined as an equivalence relation on X {\displaystyle X} , together with a partial order on the set of equivalence class.
Order-dual. The order dual of a partially ordered set is the same set with the partial order relation replaced by its converse. Order-embedding. A function f between posets P and Q is an order-embedding if, for all elements x, y of P, x ≤ y (in P) is equivalent to f(x) ≤ f(y) (in Q). Order isomorphism.
A prefix order is a binary relation "≤" over a set P which is antisymmetric, transitive, reflexive, and downward total, i.e., for all a, b, and c in P, we have that: a ≤ a (reflexivity); if a ≤ b and b ≤ a then a = b (antisymmetry); if a ≤ b and b ≤ c then a ≤ c (transitivity); if a ≤ c and b ≤ c then a ≤ b or b ≤ a ...
The identity relation = on any set is also a partial order in which every two distinct elements are incomparable. It is also the only relation that is both a partial order and an equivalence relation because it satisfies both the antisymmetry property of partial orders and the symmetry property of equivalence relations. Many advanced properties ...
Given a set and a partial order relation, typically the non-strict partial order , we may uniquely extend our notation to define four partial order relations , <,, and >, where is a non-strict partial order relation on , < is the associated strict partial order relation on (the irreflexive kernel of ), is the dual of , and > is the dual of <.
The incomparability relation is always symmetric and it will be reflexive if and only if < is an irreflexive relation (which is assumed by the above definition). Consequently, a strict partial order < is a strict weak order if and only if its induced incomparability relation is an equivalence relation.
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
In Political science and Decision theory, order relations are typically used in the context of an agent's choice, for example the preferences of a voter over several political candidates. x ≺ y means that the voter prefers candidate y over candidate x. x ~ y means the voter is indifferent between candidates x and y.