When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Reversible process (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Reversible_process...

    [a] While processes in isolated systems are never reversible, [3] cyclical processes can be reversible or irreversible. [4] Reversible processes are hypothetical or idealized but central to the second law of thermodynamics. [3] Melting or freezing of ice in water is an example of a realistic process that is nearly reversible.

  3. Biological thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Biological_thermodynamics

    Biological thermodynamics (Thermodynamics of biological systems) is a science that explains the nature and general laws of thermodynamic processes occurring in living organisms as nonequilibrium thermodynamic systems that convert the energy of the Sun and food into other types of energy. The nonequilibrium thermodynamic state of living ...

  4. Marine biogeochemical cycles - Wikipedia

    en.wikipedia.org/wiki/Marine_biogeochemical_cycles

    The presence of an oxygenated atmosphere-hydrosphere surrounding an otherwise highly reducing solid earth is the most striking consequence of the rise of life on earth. Biological evolution and the functioning of ecosystems, in turn, are to a large degree conditioned by geophysical and geological processes.

  5. Thermodynamic cycle - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_cycle

    Example of a real system modelled by an idealized process: PV and TS diagrams of a Brayton cycle mapped to actual processes of a gas turbine engine Thermodynamic cycles may be used to model real devices and systems, typically by making a series of assumptions to reduce the problem to a more manageable form. [ 2 ]

  6. Microscopic reversibility - Wikipedia

    en.wikipedia.org/wiki/Microscopic_reversibility

    The Newton and the Schrödinger equations in the absence of the macroscopic magnetic fields and in the inertial frame of reference are T-invariant: if X(t) is a solution then X(-t) is also a solution (here X is the vector of all dynamic variables, including all the coordinates of particles for the Newton equations and the wave function in the configuration space for the Schrödinger equation).

  7. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    For any irreversible process, since entropy is a state function, we can always connect the initial and terminal states with an imaginary reversible process and integrating on that path to calculate the difference in entropy. Now reverse the reversible process and combine it with the said irreversible process.

  8. Reverse Krebs cycle - Wikipedia

    en.wikipedia.org/wiki/Reverse_Krebs_cycle

    The Reductive/Reverse TCA Cycle (rTCA cycle). Shown are all of the reactants, intermediates and products for this cycle. The reverse Krebs cycle (also known as the reverse tricarboxylic acid cycle, the reverse TCA cycle, or the reverse citric acid cycle, or the reductive tricarboxylic acid cycle, or the reductive TCA cycle) is a sequence of chemical reactions that are used by some bacteria and ...

  9. Reversibility - Wikipedia

    en.wikipedia.org/wiki/Reversibility

    Reversible process (thermodynamics), a process or cycle such that the net change at each stage in the combined entropy of the system and its surroundings is zero; Reversible reaction, a chemical reaction for which the position of the chemical equilibrium is very sensitive to the imposed physical conditions; so the reaction can be made to run ...