Search results
Results From The WOW.Com Content Network
The practical impact of the "Coriolis effect" is mostly caused by the horizontal acceleration component produced by horizontal motion. There are other components of the Coriolis effect. Westward-traveling objects are deflected downwards, while eastward-traveling objects are deflected upwards. [44] This is known as the Eötvös effect. This ...
The Coriolis force acts at right angles to the flow, and when it balances the pressure gradient force, the resulting flow is known as geostrophic. As stated above, the direction of flow is with the high pressure to the right of the flow in the Northern Hemisphere , and the high pressure to the left in the Southern Hemisphere .
An ocean current is a continuous, directed movement of seawater generated by a number of forces acting upon the water, including wind, the Coriolis effect, breaking waves, cabbeling, and temperature and salinity differences. [1] Depth contours, shoreline configurations, and interactions with other currents influence a current's direction and ...
Ekman transport is the net motion of fluid as the result of a balance between Coriolis and turbulent drag forces. In the picture above, the wind blowing North in the northern hemisphere creates a surface stress and a resulting Ekman spiral is found below it in the water column.
Gyres are caused by the Coriolis effect; planetary vorticity, horizontal friction and vertical friction determine the circulatory patterns from the wind stress curl . [ 1 ] Gyre can refer to any type of vortex in an atmosphere or a sea , [ 2 ] even one that is human-created, but it is most commonly used in terrestrial oceanography to refer to ...
The three main drivers that work together to cause upwelling are wind, Coriolis effect, and Ekman transport. They operate differently for different types of upwelling, but the general effects are the same. [6] In the overall process of upwelling, winds blow across the sea surface at a particular direction, which causes a wind-water interaction.
the Coriolis effect. In this, Stommel assumed an ocean of constant density and depth + seeing ocean currents; he also introduced a linearized, frictional term to account for the dissipative effects that prevent the real ocean from accelerating. He starts, thus, from the steady-state momentum and continuity equations:
A requirement for the induction of field is a rotating fluid. Rotation in the outer core is supplied by the Coriolis effect caused by the rotation of the Earth. The Coriolis force tends to organize fluid motions and electric currents into columns (also see Taylor columns) aligned with the rotation axis.