Ads
related to: rectangular numbers up to 100 to 1000 free pictures developed free
Search results
Results From The WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
A number n that has more divisors than any x < n is a highly composite number (though the first two such numbers are 1 and 2). Composite numbers have also been called "rectangular numbers", but that name can also refer to the pronic numbers, numbers that are the product of two consecutive integers.
A pronic number is a number that is the product of two consecutive integers, that is, a number of the form (+). [1] The study of these numbers dates back to Aristotle.They are also called oblong numbers, heteromecic numbers, [2] or rectangular numbers; [3] however, the term "rectangular number" has also been applied to the composite numbers.
All pictures are licensed under CC0 – Public domain. No need to indicate the source / No registration / For commercial use. Needpix - library of more than 1.5 million free, or so-called Public Domain Photos and Illustrations licensed with CC0. PDPics.com – Public domain photo collection with about 7400 high resolution pictures up to ...
A powerful number is a positive integer m such that for every prime number p dividing m, p 2 also divides m. Equivalently, a powerful number is the product of a square and a cube, that is, a number m of the form m = a 2 b 3, where a and b are positive integers. Powerful numbers are also known as squareful, square-full, or 2-full.
Formally, a regular number is an integer of the form , for nonnegative integers , , and .Such a number is a divisor of (⌈ / ⌉,,).The regular numbers are also called 5-smooth, indicating that their greatest prime factor is at most 5. [2]
Proof without words that a hexagonal number (middle column) can be rearranged as rectangular and odd-sided triangular numbers. A hexagonal number is a figurate number.The nth hexagonal number h n is the number of distinct dots in a pattern of dots consisting of the outlines of regular hexagons with sides up to n dots, when the hexagons are overlaid so that they share one vertex.
The naming procedure for large numbers is based on taking the number n occurring in 10 3n+3 (short scale) or 10 6n (long scale) and concatenating Latin roots for its units, tens, and hundreds place, together with the suffix -illion. In this way, numbers up to 10 3·999+3 = 10 3000 (short scale) or 10 6·999 = 10 5994 (long scale