When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Power set - Wikipedia

    en.wikipedia.org/wiki/Power_set

    The power set of the set of natural numbers can be put in a one-to-one correspondence with the set of real numbers (see Cardinality of the continuum). The power set of a set S, together with the operations of union, intersection and complement, is a Σ-algebra over S and can be viewed as the prototypical example of a Boolean algebra.

  3. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    The cardinality of the set {x, y, z}, is three, while there are eight elements in its power set (3 < 2 3 = 8), here ordered by inclusion This article contains special characters . Without proper rendering support , you may see question marks, boxes, or other symbols .

  4. Equinumerosity - Wikipedia

    en.wikipedia.org/wiki/Equinumerosity

    Assuming the existence of an infinite set N consisting of all natural numbers and assuming the existence of the power set of any given set allows the definition of a sequence N, P(N), P(P(N)), P(P(P(N))), … of infinite sets where each set is the power set of the set preceding it. By Cantor's theorem, the cardinality of each set in this ...

  5. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

  6. Set-theoretic definition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_definition...

    The set N of natural numbers is defined in this system as the smallest set containing 0 and closed under the successor function S defined by S(n) = n ∪ {n}. The structure N, 0, S is a model of the Peano axioms (Goldrei 1996). The existence of the set N is equivalent to the axiom of infinity in ZF set theory.

  7. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    A generalized form of the diagonal argument was used by Cantor to prove Cantor's theorem: for every set S, the power set of S—that is, the set of all subsets of S (here written as P(S))—cannot be in bijection with S itself. This proof proceeds as follows:

  8. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".

  9. Beth number - Wikipedia

    en.wikipedia.org/wiki/Beth_number

    the power set of the set of real numbers, so it is the number of subsets of the real line, or the number of sets of real numbers; the power set of the power set of the set of natural numbers; the set of all functions from to ()