Search results
Results From The WOW.Com Content Network
Switching {X,Y} in a graph. A two-graph is equivalent to a switching class of graphs and also to a (signed) switching class of signed complete graphs.. Switching a set of vertices in a (simple) graph means reversing the adjacencies of each pair of vertices, one in the set and the other not in the set: thus the edge set is changed so that an adjacent pair becomes nonadjacent and a nonadjacent ...
In general, a subdivision of a graph G (sometimes known as an expansion [2]) is a graph resulting from the subdivision of edges in G. The subdivision of some edge e with endpoints {u,v } yields a graph containing one new vertex w, and with an edge set replacing e by two new edges, {u,w } and {w,v }. For directed edges, this operation shall ...
It can be explained as a form of sampling bias in which people with more friends are more likely to be in one's own friend group. In other words, one is less likely to be friends with someone who has very few friends. In contradiction to this, most people believe that they have more friends than their friends have. [2] [3] [4] [5]
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
[6] [7] [8] Quizlet's blog, written mostly by Andrew in the earlier days of the company, claims it had reached 50,000 registered users in 252 days online. [9] In the following two years, Quizlet reached its 1,000,000th registered user. [10] Until 2011, Quizlet shared staff and financial resources with the Collectors Weekly website. [11]
The complement graph ¯ of a simple graph G is another graph on the same vertex set as G, with an edge for each two vertices that are not adjacent in G. complete 1. A complete graph is one in which every two vertices are adjacent: all edges that could exist are present. A complete graph with n vertices is often denoted K n.
Operations between graphs include evaluating the direction of a subsumption relationship between two graphs, if any, and computing graph unification. The unification of two argument graphs is defined as the most general graph (or the computation thereof) that is consistent with (i.e. contains all of the information in) the inputs, if such a ...
Two graphs G and H are homomorphically equivalent if G → H and H → G. [4] The maps are not necessarily surjective nor injective. For instance, the complete bipartite graphs K 2,2 and K 3,3 are homomorphically equivalent: each map can be defined as taking the left (resp. right) half of the domain graph and mapping to just one vertex in the left (resp. right) half of the image graph.