Search results
Results From The WOW.Com Content Network
In engineering, a parallel force system is a type of force system where in all forces are oriented along one axis. An example of this is a see saw . The children are applying the two forces at the ends, and the fulcrum in the middle gives the counter force to maintain the see saw in neutral position.
When more than two forces are involved, the geometry is no longer a parallelogram, but the same principles apply to a polygon of forces. The resultant force due to the application of a number of forces can be found geometrically by drawing arrows for each force. The parallelogram of forces is a graphical manifestation of the addition of vectors.
The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)
A single force acting at any point O′ of a rigid body can be replaced by an equal and parallel force F acting at any given point O and a couple with forces parallel to F whose moment is M = Fd, d being the separation of O and O′. Conversely, a couple and a force in the plane of the couple can be replaced by a single force, appropriately ...
One possibility for force control is parallel force/position control. The control is designed as a cascade control and has an external force control loop and an internal position control loop. As shown in the following figure, a corresponding infeed correction is calculated from the difference between the nominal and actual force.
The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.
The parallel muscle architecture is found in muscles where the fibers are parallel to the force-generating axis. [1] These muscles are often used for fast or extensive movements and can be measured by the anatomical cross-sectional area (ACSA). [3] Parallel muscles can be further defined into three main categories: strap, fusiform, or fan-shaped.
In physics and engineering, a free body diagram (FBD; also called a force diagram) [1] is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a free body in a given condition. It depicts a body or connected bodies with all the applied forces and moments, and reactions, which act on the body(ies).