Ad
related to: acetyl coa coenzyme a benefits
Search results
Results From The WOW.Com Content Network
Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. [2] Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidized for energy production.
Coenzyme A (CoA, SHCoA, CoASH) is a coenzyme, notable for its role in the synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid cycle.All genomes sequenced to date encode enzymes that use coenzyme A as a substrate, and around 4% of cellular enzymes use it (or a thioester) as a substrate.
Two specific enzymes participate on the carbon monoxide side of the pathway: CO dehydrogenase and acetyl-CoA synthase. The former catalyzes the reduction of the CO 2 and the latter combines the resulting CO with a methyl group to give acetyl-CoA. [1] [2] Some anaerobic bacteria use the Wood–Ljungdahl pathway in reverse to break down acetate.
Acetyl-CoA synthetase (ACS) or Acetate—CoA ligase is an enzyme (EC 6.2.1.1) involved in metabolism of acetate. It is in the ligase class of enzymes, meaning that it catalyzes the formation of a new chemical bond between two large molecules.
Thiolases are a family of evolutionarily related enzymes.Two different types of thiolase [4] [5] [6] are found both in eukaryotes and in prokaryotes: acetoacetyl-CoA thiolase (EC 2.3.1.9) and 3-ketoacyl-CoA thiolase (EC 2.3.1.16). 3-ketoacyl-CoA thiolase (also called thiolase I) has a broad chain-length specificity for its substrates and is involved in degradative pathways such as fatty acid ...
The systematic name of this enzyme class is acetyl-CoA:[acyl-carrier-protein] S-acetyltransferase. Other names in common use include acetyl coenzyme A-acyl-carrier-protein transacylase, acetyl-CoA:ACP transacylase, [acyl-carrier-protein]acetyltransferase, [ACP]acetyltransferase, and ACAT. This enzyme participates in fatty acid biosynthesis.
CoA is also required for acylation and acetylation, which, for example, are involved in signal transduction, and various enzyme functions. [14] In addition to functioning as CoA, this compound can act as an acyl group carrier to form acetyl-CoA and other related compounds; this is a way to transport carbon atoms within the cell. [9]
Pyruvate dehydrogenase (EC 1.2.4.1) is responsible for the oxidation of pyruvate, dihydrolipoyl transacetylase (this enzyme; EC 2.3.1.12) transfers the acetyl group to coenzyme A (CoA), and dihydrolipoyl dehydrogenase (EC 1.8.1.4) regenerates the lipoamide. Because dihydrolipoyl transacetylase is the second of the three enzyme components ...