When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shearing (physics) - Wikipedia

    en.wikipedia.org/wiki/Shearing_(physics)

    The rectangularly-framed section has deformed into a parallelogram (shear strain), but the triangular roof trusses have resisted the shear stress and remain undeformed. In continuum mechanics, shearing refers to the occurrence of a shear strain, which is a deformation of a material substance in which parallel internal surfaces slide past one another.

  3. Shear force - Wikipedia

    en.wikipedia.org/wiki/Shear_force

    This section calculates the force required to cut a piece of material with a shearing action. The relevant information is the area of the material being sheared, i.e. the area across which the shearing action takes place, and the shear strength of the material. A round bar of steel is used as an example.

  4. Shear mapping - Wikipedia

    en.wikipedia.org/wiki/Shear_mapping

    Therefore, the shear factor m is the cotangent of the shear angle between the former verticals and the x-axis. (In the example on the right the square is tilted by 30°, so the shear angle is 60°.) (In the example on the right the square is tilted by 30°, so the shear angle is 60°.)

  5. Strain (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Strain_(mechanics)

    The state of strain at a material point of a continuum body is defined as the totality of all the changes in length of material lines or fibers, the normal strain, which pass through that point and also the totality of all the changes in the angle between pairs of lines initially perpendicular to each other, the shear strain, radiating from ...

  6. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    A shearing force is applied to the top of the rectangle while the bottom is held in place. The resulting shear stress, τ, deforms the rectangle into a parallelogram. The area involved would be the top of the parallelogram. Shear stress (often denoted by τ, Greek: tau) is the component of stress coplanar with a material cross section.

  7. Torsion (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Torsion_(mechanics)

    Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].

  8. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    In that case, the shear stress on each cross-section is parallel to the cross-section, but oriented tangentially relative to the axis, and increases with distance from the axis. Significant shear stress occurs in the middle plate (the "web") of I-beams under bending loads, due to the web constraining the end plates ("flanges").

  9. Strain rate - Wikipedia

    en.wikipedia.org/wiki/Strain_rate

    Similarly, the sliding rate, also called the deviatoric strain rate or shear strain rate is the derivative with respect to time of the shear strain. Engineering sliding strain can be defined as the angular displacement created by an applied shear stress, τ {\displaystyle \tau } .