Search results
Results From The WOW.Com Content Network
Inductive reactance is the opposition of an inductor to an alternating current. [21] It is defined analogously to electrical resistance in a resistor, as the ratio of the amplitude (peak value) of the alternating voltage to current in the component = = Reactance has units of ohms.
In electrical circuits, reactance is the opposition presented to alternating current by inductance and capacitance. [1] Along with resistance, it is one of two elements of impedance; however, while both elements involve transfer of electrical energy, no dissipation of electrical energy as heat occurs in reactance; instead, the reactance stores energy until a quarter-cycle later when the energy ...
Fig. 1 L P σ and L S σ are primary and secondary leakage inductances expressed in terms of inductive coupling coefficient under open-circuited conditions. The magnetic circuit's flux that does not interlink both windings is the leakage flux corresponding to primary leakage inductance L P σ and secondary leakage inductance L S σ .
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
Any branch current is not minimal at resonance, but each is given separately by dividing source voltage (V) by reactance (Z). Hence I = V / Z , as per Ohm's law. At f 0 , the line current is minimal. The total impedance is maximal. In this state a circuit is called a rejector circuit. [5] Below f 0 , the circuit is inductive.
Reactance is defined as the imaginary part of electrical impedance, and is analogous to but not generally equal to the negative reciprocal of the susceptance – that is their reciprocals are equal and opposite only in the special case where the real parts vanish (either zero resistance or zero conductance). In the special case of entirely zero ...
The coil is built to have an inductive reactance equal and opposite to the capacitive reactance of the short antenna, so the combination of reactances cancels. When so loaded the antenna presents a pure resistance to the transmission line, preventing energy from being reflected.
The inductive reactance is chosen to be low enough for an acceptable voltage drop during normal operation, but high enough to restrict a short circuit to the rating of the switchgear. The amount of protection that a current limiting reactor offers depends upon the percentage increase in impedance that it provides for the system. [4]