When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Propulsive efficiency - Wikipedia

    en.wikipedia.org/wiki/Propulsive_efficiency

    The propulsive efficiency is always less than one, because conservation of momentum requires that the exhaust have some of the kinetic energy, and the propulsive mechanism (whether propeller, jet exhaust, or ducted fan) is never perfectly efficient. It is greatly dependent on exhaust expulsion velocity and airspeed.

  3. Jet engine performance - Wikipedia

    en.wikipedia.org/wiki/Jet_engine_performance

    The thermodynamic and propulsive efficiencies are independent. For the turbojet though, any improvement which raised the cycle pressure ratio or turbine inlet temperature also raised the jet pipe temperature and pressure giving a higher jet velocity relative to aircraft velocity. As the thermal efficiency went up the propulsive efficiency went ...

  4. Propeller theory - Wikipedia

    en.wikipedia.org/wiki/Propeller_theory

    The ratio between a propeller's efficiency attached to a ship and in open water (′) is termed relative rotative efficiency. The overall propulsive efficiency (an extension of effective power ()) is developed from the propulsive coefficient (), which is derived from the installed shaft power modified by the effective power for the hull with ...

  5. Strouhal number - Wikipedia

    en.wikipedia.org/wiki/Strouhal_number

    The number relates to propulsive efficiency, which peaks between 70%–80% when within the optimal Strouhal number range of 0.2 to 0.4. Through the use of factors such as the stroke frequency, the amplitude of each stroke, and velocity, the Strouhal number is able to analyze the efficiency and impact of an animal's propulsive forces through a ...

  6. Specific impulse - Wikipedia

    en.wikipedia.org/wiki/Specific_impulse

    When calculating specific impulse, only propellant carried with the vehicle before use is counted, in the standard interpretation. This usage best corresponds to the cost of operating the vehicle. For a chemical rocket, unlike a plane or car, the propellant mass therefore would include both fuel and oxidizer. For any vehicle, optimising for ...

  7. Aircraft engine performance - Wikipedia

    en.wikipedia.org/wiki/Aircraft_engine_performance

    Aircraft engine performance refers to factors including thrust or shaft power for fuel consumed, weight, cost, outside dimensions and life. It includes meeting regulated environmental limits which apply to emissions of noise and chemical pollutants, and regulated safety aspects which require a design that can safely tolerate environmental hazards such as birds, rain, hail and icing conditions.

  8. Reaction engine - Wikipedia

    en.wikipedia.org/wiki/Reaction_engine

    Plot of instantaneous propulsive efficiency (blue) and overall efficiency for a vehicle accelerating from rest (red) as percentages of the engine efficiency. In the ideal case is useful payload and is reaction mass (this corresponds to empty tanks having no mass, etc.). The energy required can simply be computed as

  9. Characteristic velocity - Wikipedia

    en.wikipedia.org/wiki/Characteristic_velocity

    Characteristic velocity or , or C-star is a measure of the combustion performance of a rocket engine independent of nozzle performance, and is used to compare different propellants and propulsion systems. c* should not be confused with c, which is the effective exhaust velocity related to the specific impulse by: =.