Search results
Results From The WOW.Com Content Network
The laws of thermodynamics imply the following relations between these two heat capacities (Gaskell 2003:23): = = Here is the thermal expansion coefficient: = is the isothermal compressibility (the inverse of the bulk modulus):
C p is therefore the slope of a plot of temperature vs. isobaric heat content (or the derivative of a temperature/heat content equation). The SI units for heat capacity are J/(mol·K). Molar heat content of four substances in their designated states above 298.15 K and at 1 atm pressure. CaO(c) and Rh(c) are in their normal standard state of ...
The above derivation uses the first and second laws of thermodynamics. The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system.
See relations between specific heats for the derivation of the thermodynamic relations between the heat capacities. The above definition is the approach used to develop rigorous expressions from equations of state (such as Peng–Robinson ), which match experimental values so closely that there is little need to develop a database of ratios or ...
This relation was built on the reasoning that energy must be supplied to raise the temperature of the gas and for the gas to do work in a volume changing case. According to this relation, the difference between the specific heat capacities is the same as the universal gas constant. This relation is represented by the difference between Cp and Cv:
Also for substances that are nearly incompressible, such as solids and liquids, the difference between the two specific heats is negligible. As the absolute temperature of the system approaches zero, since both heat capacities must generally approach zero in accordance with the Third Law of Thermodynamics , the difference between C P ,m and C V ...
The heat capacity may be well-defined even for heterogeneous objects, with separate parts made of different materials; such as an electric motor, a crucible with some metal, or a whole building. In many cases, the (isobaric) heat capacity of such objects can be computed by simply adding together the (isobaric) heat capacities of the individual ...
The ratio between the two, however, is the same heat capacity ratio obtained from the corresponding specific heat capacities. This property is most relevant in chemistry, when amounts of substances are often specified in moles rather than by mass or volume.