Search results
Results From The WOW.Com Content Network
DNA polymerase II (also known as DNA Pol II or Pol II) is a prokaryotic DNA-dependent DNA polymerase encoded by the PolB gene. [1] DNA Polymerase II is an 89.9-kDa protein and is a member of the B family of DNA polymerases. It was originally isolated by Thomas Kornberg in 1970, and characterized over the next few years.
A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create two identical DNA duplexes from a single original DNA duplex.
[42] [43] [44] KOD polymerase and some modified thermostable DNA polymerases (iProof/Phusion, Pfu Ultra, Velocity or Z-Taq) are used as a PCR variant with shorter amplification cycles (fast PCR, high-speed PCR) due to their high synthesis rate. Processivity describes the average number of base pairs before a polymerase falls off the DNA template.
DNA exists in many possible conformations that include A-DNA, B-DNA, and Z-DNA forms, although only B-DNA and Z-DNA have been directly observed in functional organisms. [14] The conformation that DNA adopts depends on the hydration level, DNA sequence, the amount and direction of supercoiling, chemical modifications of the bases, the type and ...
The DNA polymerase of Thermococcus litoralis is stable at high temperatures, with a half-life of eight hours at 95 °C (203 °F) and two hours at 100 °C (212 °F). [6] It also has a proofreading activity that is able to reduce mutation frequencies to a level 2–4 times lower than most non-proofreading DNA polymerases.
Structure of Taq DNA polymerase. In biochemistry, a polymerase is an enzyme (EC 2.7.7.6/7/19/48/49) that synthesizes long chains of polymers or nucleic acids. DNA polymerase and RNA polymerase are used to assemble DNA and RNA molecules, respectively, by copying a DNA template strand using base-pairing interactions or RNA by half ladder replication.
A polymerase chain reaction is a form of enzymatic DNA synthesis in the laboratory, using cycles of repeated heating and cooling of the reaction for DNA melting and enzymatic replication of the DNA. DNA synthesis during PCR is very similar to living cells but has very specific reagents and conditions.
The interactions between the polymerase and the clamp are more persistent than those between the polymerase and the DNA. Thus, when the polymerase dissociates from the DNA, it is still bound to the clamp and can rapidly reassociate with the DNA. An example of such a DNA clamp is PCNA (proliferating cell nuclear antigen) found in S. cervesiae.